
Faculty of Computer Science, Free University of Bozen-Bolzano

Universidade Nova de Lisboa

Master of Science Thesis

Query Evaluation of Tractable

Answering using Query Rewriting

by

Zakka Fauzan Muhammad

Supervisor: Dr. Mariano Rodriguez-Muro

Bolzano, 2012

To my beloved wife...

Contents

Contents i

1 Introduction 5

1.1 Structure of Thesis . 5

2 Description Logics 7

2.1 DL-LiteR . 7

2.2 ELHI . 9

2.3 DL-Lite+ . 10

3 Query Rewriting 13

3.1 Datalog . 13

3.1.1 Linear Datalog . 14

3.1.2 Query . 14

3.2 Resolution-Based Query Rewriting 15

3.3 Query Rewriting on Description Logics 15

3.4 REQUIEM . 17

3.4.1 Query Produced by REQUIEM 17

4 Datalog Engines and RDBMSes Used 19

4.1 Datalog Engine . 19

4.1.1 XSB . 19

4.1.2 LDL++ . 20

4.1.3 DLV . 21

4.2 Relational Database Management System 23

4.2.1 PostgreSQL . 23

4.2.2 DB2 . 23

4.2.3 Apache Derby . 24

4.3 Translation to SQL . 24

4.3.1 Execution of Union of Conjunctive Queries in RDBMS . . . 24

i

ii CONTENTS

4.3.2 Execution of Linear Datalog and Datalog Query in RDBMS 26

4.4 Storing the Knowledge Base . 27

4.4.1 Storing the Knowledge Base on Datalog Engine 28

4.4.2 Storing the Knowledge Base on RDBMS 28

5 Comparison of Query Evaluation 29

5.1 Evaluation Mechanism . 29

5.1.1 Obtain the Ontology . 29

5.1.2 Create the Representative Query 31

5.1.3 Rewrite the Query . 31

5.1.4 Generate the Data . 32

5.1.5 Configuration of the Engines 32

5.2 Result of The Evaluation . 32

5.2.1 Correctness . 33

5.2.2 Time Measurement . 33

5.2.3 Memory Consumption . 34

6 Conclusion and Future Work 37

6.1 Conclusion . 37

6.2 Future Work . 38

Bibliography 39

A Knowledge Base Used 45

B Query Used 53

C Full Results of the Evaluation 55

List of Figures 61

List of Tables 62

Abstract

Nowadays, the use of ontologies in many application domains has risen quickly.

One of the most important aspects of using ontologies in practice is Ontology

Based Data Access, i.e., querying large volumes of data while exploiting the se-

mantics expressed in the ontology. There are two approaches for solving this

problem, one possibility is to chase the data w.r.t. the ontology, however this

process can be costly and it depending on the ontology language could not be

applicable; a second possibility is to rewrite the query w.r.t. the ontology. The

second approach has been extensively studied in the last years. Several ontology

language families have been proposed that aim at providing efficient query an-

swering in the presence of large amounts of data. One of these is the DL-Lite

family that allows for the generation of simple query rewritings, i.e., Union of

Conjunctive Queries. This family has been studied extensively and there is con-

crete evidence that good performance is achievable in practice. A second family

of languages is the EL family. These languages allow to express recursion in the

ontology and hence, query rewritings in this case are recursive Datalog programs.

However, how to evaluate these programs in the presence of large amounts of data

has never been studied, and of course, the performance of this kind of rewritings

in practice is unknown.

The objective of this thesis is to extend knowledge of this topic. Some experi-

ments with different ways of dealing with large volumes of data in ELHI ontologies

will be done. We will report on the performance of rewriting techniques using

different evaluation mechanisms, including traditional Datalog engines and the

recursive features of SQL. In the end, we will provide a clear picture on the

reach and limits of recursive query rewritings for Ontology Based Data Access.

This data will be relevant for the implementation of OBDA query answering sys-

tems based on ELHI and any other any language that allows for recursively, e.g.,

different fragments of SWRL and other semantic web oriented languages.

1

Acknowledgements

I would like to thanks my supervisor, Dr. Mariano Rodriguez-Muro, who has

been supporting me during the fulfillment of this thesis, also to go through several

difficult situations I had before, like the changing of the topic, starting all over

again, and problem with the visa to get back to Italy. Also I would like to say

thank you to Prof. Diego Calvanese, who made a great input to this thesis, and

also found out that the problem I would like to solve before is actually impossible

to solve.

My gratitude also goes to the administrative staffs of Free University of Bozen-

Bolzano, Ms. Veith Isolde and Ms. Federica Cumer, who have been so much

patience answering my question regarding the defense. Without whom I might

be lost in the execution of the thesis.

Also I would like to say my thanks to my house-mates while I was living in

the apartment for the help and for being the same “crusaders” to get finishing

the defense. Lilian, my house-mate for 6 months, also Ario and Rahmad, my

two house-mates for quite long while I was in via Cappuccini 2, also my two best

friends here. Thanks for all the input to the thesis, not forgetting all the laugh,

the time to discuss together, whether it is important or not so important, and so

on.

To all my friends who always asked “how is the progress of your thesis?”, thank

you very much. Marie, Mia, Hendro, Anton, Kosumo, Topan, Nabil, Evgeny,

Josef, Ognjen, Héctor, and all my friend here that I have not stated. Without

that ‘annoying’ question, I would not be encouraged to finish the thesis as soon

as possible.

Of course this would apply to my family everywhere. My parents, who were

being left by their kids and living in the home just the two of them. My brother

Nanda, Habib, and Fahmi that are in different countries nowadays, also my grand-

mas, my uncles, aunts, cousins, and my two little nephwes. Last but not least,

to Dyah Saptanti Perwitasari, who was my friend for quite long enough when

we were in bachelor degree, and now is my beloved wife, thank you so much for

all your support and patience for my behaviour. I cannot thank you enough my

3

4 CONTENTS

family.

Alhamdulillah, thank you Allah for giving me a chance finishing this thesis.

Chapter 1

Introduction

Query rewriting has been an interesting topic on answering a query in Description

Logics, since it can create a more effective answering. Several methods have

been developed, such as the using of view as rewriting proposed by Beeri et al.

(1997), the using of Relational Database System to rewrite ABox proposed by

Lutz et al. (2009), PerfectRef proposed by Calvanese et al. (2007), a resolution-

based rewriting proposed by Rosati (2007), and another rewriting technique based

on resolution, RDL, proposed by Pérez-Urbina et al. (2010), Pérez-Urbina et al.

(2008a,b, 2009a).

However, there are only few of them that have tried to be evaluated using a

Datalog engine or DBMS, to measure the performance of those query rewritings

in the real world.

One of the query rewriting covering quite many languages and has been im-

plemented is RDL, since it has been proven to work on three different families of

different logics, namely EL, ELH, ELHI, DL-Lite+, and DL-LiteR. On the first

three families, we will be focusing only in the third one, since it is more expressive

than the two formers.

Here, we would like to see how effective the implementation of thisRDL, which

is REQUIEM, when they are evaluated on several Datalog engines or DBMS. We

would like to cover the possibility of using several engines because one can be

faster to the others for several cases, vice versa.

1.1 Structure of Thesis

Here, we will describe the structure of the document. In the Chapter 1, this

chapter, we will give an introduction to explain what this document is about, what

our motivation to create this document, and how we structure the document.

5

6 CHAPTER 1. INTRODUCTION

The Chapter 2 describes generally about the three families of description

logics, which are DL-LiteR, ELHI, and DL-Lite+. It will not be explained

everything about those three languages, since what we need here is just the brief

knowledge about the three families, and the differences between the families,

including the difference of answering on each of them and the limitation, based

on the syntaxes accepted.

The Chapter 3 describes generally about the query rewriting we use, the

reason why we use this query rewriting, the basis of this query rewriting, the

system implementation this query, and the result of doing the query rewriting,

respectively, for each language we explain in the Chapter 2.

The Chapter 4 describes generally about the engines we use to do the evalua-

tion on query rewriting described on Chapter 3. In this chapter, we explain also

the reason why we choose one engine over the another. There is another thing

we explain in this chapter, which is how the execution is done for one kind of

the engine, since the syntax of the produced result by the query rewriter is more

similar to those in one of the kind of the engine, we will need to translate them

to the other kind of engine to make the produced result executable. Beside, we

will also explain how we will store the whole knowledge base inside the engine.

The Chapter 5 is the main chapter of the document. Here we will describe

the way we evaluate the produced result, including how we obtain the ontology,

how we create a “representative” query, and also generate the dummy data to be

queried over. Also, we will show the result after we do the whole mechanism in

this chapter, and we will do the comparison between the result of the evaluation

on the different engines.

The last chapter, Chapter 6 is the conclusion of the document. We will put

what we get from Chapter 5 and give our conclusion here. Also, we will put what

can be the future work that is related to the result of this document.

Chapter 2

Description Logics

In this Chapter, we will present several families of description logics that cover

several area in ontology. Moreover the query given on these three families, later,

can be rewritten using the RDL that will be evaluated using several Datalog

engines and RDBMSes.

2.1 DL-LiteR

This language is proposed by Calvanese et al. (2007). The DL-Lite family is a

family of DLs specifically tailored to capture basic ontology languages, conceptual

data models, e.g., Entity-Relationship, and object-oriented formalisms, e.g., basic

UML class diagrams, while keeping the complexity of reasoning low. In particu-

lar, ontology satisfiability, instance checking, and answering conjuctive queries in

these logics can all be done in LogSpace with respect to data complexity (Poggi

et al., 2008). Here, we use one family of DL-Lite, which is DL-LiteR. In this

thesis, most of the definition of DL-LiteR taken from paper by Calvanese et al.

(2009).

As mentioned in Description Logics (DLs) (Baader et al., 2003), concepts,

which denote classes of objects, and roles (i.e., binary relationships), which denote

binary relations between objects can model the domain of interest. Like any other

logic, DL-LiteR expressions are built over an alphabet, which comprises symbols

for atomic concepts, atomic roles, and constants. Here, we use Γ to denote the

alphabet of constants symbols for objects.

The complete notation of the language is as follow:

1. A denotes an atomic concept, B a basic concept, C a general concept. An

atomic concept is a concept denoted by a name. The syntax of basic and

general concepts will be described after.

7

8 CHAPTER 2. DESCRIPTION LOGICS

2. P denotes an atomic role, Q a basic role, and R a general role. An atomic

role is denoted by a name. The syntax of basic and general role will be

described after.

The description of DL-LiteR expressions is as follow:

1. Basic and general concepts have the syntax as follow:

B → A | ∃Q
C → > | B | ¬B | ∃Q.C

where ¬B denotes the negation of a basic concept B. The concept ∃Q, also

called unqualified existential restriction, denotes the domain of a role Q,

which is the set of objects that Q relates to some object. The concept ∃Q.C,

also called qualified existential restriction, denotes the qualified domain of

Q w.r.t. C, i.e. the set of objects that Q relates to some instance of C.

2. Role expressions have the syntax as follow:

Q → P | P−

R → Q | ¬Q

where P− denotes the inverse of an atomic role, and ¬Q denotes the nega-

tion of a basic role.

DL-LiteR ontology, or knowledge base(KB), like any other description logic

families, is constituted by two components:

• a TBox, ‘T’ stands for terminological, which is a finite set of intensional

assertions, and

• an ABox, ‘A’ stands for assertional, which is a finite set of extensional

assertions.

In DL-LiteR, the TBox may contain intensional assertions as follows:

B v C, Q v R,

denoting respectively, inclusion between concepts and roles. It is intuitive to

know that inclusion means, in every model of T , each instance of the left-hand

side expression is also an instance of the right-hand side expression.

An inclusion assertion that has ‘¬’ on the right side is called a negative in-

clusion (NI), while the one that does not have it is called a positive inclusion

(PI).

2.2. ELHI 9

Example 1. The inclusion Parent v ∃HAS-CHILD defines that every parent

must have a child, the inclusion HAS-PARENT v HAS-ANCESTOR defines that

a parent of someone is also an ancestor of that person. The negative inclusion

Man v ¬Woman defines that men and women are disjoint.

Then, a DL-LiteR TBox is a finite sets of intensional assertions of the two

forms. On the other hand, a DL-LiteR ABox consists of a set of membership

assertions, where are used to state the instanece of concepts and roles. Such

assertion have the form

A (a) , P (a1, a2) ,

where A is an atomic concept, P is an atomic role, a, a1, a2 are constants in Γ.

Definition 1 (DL-LiteR ontology). A DL-LiteR ontology O is a pair 〈T ,A〉,
where T is a DL-LiteR TBox and A is a DL-LiteR ABox, all of whose atomic

concepts and roles occur in T .

2.2 ELHI

In this Section, we will briefly tell about ELHI, which is another family of De-

scription Logics. We would mostly take the material of this Section from papers

explaining EL++ and ELH (Brandt, 2004, Baader et al., 2005, Pérez-Urbina et al.,

2008a).

It has been shown that the complexity of query answering for the DL ELHI
that subsumption and instance problem w.r.t. cyclic terminologies can be decided

in polynomial time. It is ranging from LogSpace to PTime-complete w.r.t. the

data complexity of answering query given.

Concept descriptions are inductively defined with the help of a set of con-

cept constructors, starting with a set Ncon of concept names and a set Nrole of

role names. The DL ELHI provides the concept constructors top-concept (>),

conjunction (C uD), and existential restrictions (∃R.C).

Like DL-LiteR, ELHI consists of concepts and roles. The complete notation

of the language is as follow:

1. A denotes an atomic concept, and B a basic concept. The syntax of atomic

concept is exactly the same with one in DL-LiteR, while the syntax of basic

concept will be described after.

2. P denotes an atomic role, and R a basic role. The syntax of atomic role is

exactly the same with one in DL-LiteR, while the syntax of basic role will

be described after.

Here, we use the normalized ELHI TBox as described by Brandt (2004), then

we have the description of ELHI expressions as follow:

10 CHAPTER 2. DESCRIPTION LOGICS

1. Basic concept has the syntax as follow:

B → A | ∃R | ∃R.A | B1 uB2

The concept ∃R denotes the domain of a role R, the concept ∃R.A denotes

the domain of a role R of which the range is some instance of A. Then, the

concept B1 u B2 denotes the object that is belong to both B1 and B2. In

the end, ∃R can be omitted since it is equal to ∃R.>.

2. Basic role has the syntax as follow:

R → P | P−

where P− denotes the inverse of an atomic role.

Just like DL-LiteR and any other description logic families, ELHI ontology is

constituted by TBox and ABox. The ELHI ABox consists of a set of membership

assertions, which are assertions of concepts or roles.

On the other hand, the ELHI TBox is slightly different. There are two

possible subsumption on ELHI , which are

B1 v B2, R1 v R2,

denoting respectively, inclusion between concepts and roles. One main difference

with DL-LiteR is, there is no difference between instances that can appear on

the left-hand side of the expression with ones that can appear on the right-hand

side.

From here, we can easily see that the qualified existential restriction can

appear both in the left-hand side and right-hand side, which is one thing that

is more expressive than DL-LiteR. On the other hand, there is no possibility of

having negation on the subsumption (non-existential).

Examples of ELHI TBoxes that cannot be expressed with DL-LiteR is shown

in Example 2.

Example 2. The inclusion HAS-TEACHING.Course v Lecturer means that

everyone teaching a course is a lecturer. On the other hand, Student u Researcher

v PhDStudent tells us that every student that is also a researcher is a PhD

student.

2.3 DL-Lite+

In this section, we will briefly tell about DL-Lite+, which is one another family

of Description Logics. We would mostly take the material of this Section from

papers explaining DL-Lite (Calvanese et al., 2007).

2.3. DL-LITE+ 11

DL-Lite+ can be seen as the Description Logic family between DL-LiteR and

ELHI . It is strictly less expressive than ELHI , because there is no possibility of

adding disjunctive in DL-Lite+, it is uncomparable with DL-LiteR, since there is

a feature added in DL-Lite+ that is not exist in DL-LiteR, vice versa. However,

it has been shown that DL-Lite+ is more difficult than DL-LiteR, since the

complexity of query answering in DL-Lite+ is NLogSpace.

Just like DL-Lite+ and ELHI, the syntax of DL-Lite+ also consists of two

main elements, which are concepts and roles. The complete notation of DL-Lite+

language is as follow:

1. A denotes an atomic concept, B a basis concept. The syntax of atomic

concept is exactly the same with ones in DL-LiteR and ELHI, while the

syntax of basic concept will be described after.

2. P denotes an atomic role.

The description of DL-Lite+ expressions is as follow:

1. Basic concept has the syntax as follow

B → A | ∃P | ∃P.A

The concept ∃P denotes the domain of a role P , the concept ∃P.A denotes

the domain of a role P of which the range is some instance of a concept A.

In the end, we can easily omit ∃P since it was a special case of ∃P.A where

A is equal to >.

Then, same as before, DL-Lite+ ontology is constituted by TBox and ABox.

The DL-Lite+ ABox consists of a set of membership assertions, which are also

assertions of concepts or roles.

On the other hand, the DL-Lite+ TBox can be differed into two possible

subsumption, which are

B1 v B2, P1 v P2,

denoting respectively, inclusion between concepts and roles. Like ELHI , there

is no difference between instances that can appear on the left-hand side of the

expression with ones that can appear on the right-hand side.

Note that, since the subsumption in ELHI is more general than one in DL-

Lite+, it is easy to see that ELHI is strictly more expressive than DL-Lite+. The

first TBox example in 2 can also be expressed by DL-Lite+ , while the second

one is impossible since there is a disjunction on the left-hand side of the TBox.

Chapter 3

Query Rewriting

In this Chapter, we will explain more detail on query rewriting we are going

to use for the evaluation, which is RDL. The query rewriting itself has been

implemented, named REQUIEM∗. Given a query, this system will return the

datalog query, union of conjunctive queries, or union of conjunctive queries and

a linear datalog program, depends of in which family the Description Logics will

be given, either in ELHI, DL-LiteR, or DL-Lite+.

Generally, there are two ways of answering a query. One, by trying every

possible interpretation, and check whether the given interpretation is the model

of the query w.r.t. the knowledge base and the database. This idea is not very

efficient, since we may have a lot of interpretations. Hence, the second way to

get the answer of a query, which is query rewriting over the knowledge base is

commonly used to answer a query.

Query rewriting (or query reformulation) rew of a query Q is defined as fol-

lows. Given TBox T , ABox A. Defined tr as translation function from the

knowledge base to the clause. Here, denoted KB as T ∪ A. The query rewriting

rew has to make ans (Q,KB) = ans (Q, rew (T) ∪ A). The idea of query refor-

mulation is not to create the whole possible knowledge base when answering a

query, since it is oftenly possible that knowledge base needed to answer a query

is much smaller than the whole knowledge base.

3.1 Datalog

Datalog is the language used for deductive database system. It is similar to

Prolog, where every clause must be a horn clause, i.e. conjunctive of literal with

∗http://www.cs.ox.ac.uk/projects/requiem/home.html

13

http://www.cs.ox.ac.uk/projects/requiem/home.html

14 CHAPTER 3. QUERY REWRITING

at most one positive literal. The main reason why Datalog exists is because the

need of combinating logic and database (Gallaire et al., 1984).

One difference between Datalog and Prolog is one cannot put a complex

predicate, every predicate must consist of one or zero variable or constant, or

in other words, no function term is allowed as an argument of the predicate in

Datalog.

Datalog consists of head and rule, the syntax is as follow.

Body1, . . . , Bodyn → Head.

In case n = 0, it is called a fact, or extensional database (EDB), otherwise it

is a rule, or intentional database (IDB). The definition of the syntax is, whenever

Body1, . . . , Bodyn are all true, Head will also be true. We may also say that fact

is actually a subset of rule, where there is no body atom exists.

The EDB predicates value are given via an input database, while the IDB

predicates value are computed by the program. In standard Datalog, EDB pred-

icate symbols may only appear in Body (Cal̀ı et al., 2010). In other words, those

predicates appearing in head of a non-zero predicate in the body are all IDBs.

We then define Datalog program as the set of rules having syntax as written

above, note that the term rules here cover both rule as fact, where there is no

body atom, and the “real” rule.

Regarding the complexity, the general Datalog program has a tractable com-

plexity, w.r.t data complexity, which is PTime-complete (Dantsin et al., 2001,

Gottlob and Papadimitriou, 2003), while its program and combined complexities

are both ExpTime-complete.

3.1.1 Linear Datalog

One interesting fragment of datalog is linear Datalog. Linear Datalog programs

are programs whose clauses have at most one intensional atom in their bodies

(Cal̀ı et al., 2010, Afrati et al., 2003). This fragment of Datalog is interesting

because it is a Datalog program of which the proof tree is basically a path.

Moreover, problem that is solvable by linear Datalog has quite interesting

complexity, which is non-deterministic logarithmic space (NLogSpace-complete)

w.r.t data complexity, and it is well-known that NLogSpace ⊆ PTime, although

it is still an open problem whether the left hand side is strictly contained or not

on the other. On the other hand, the program and combined complexities are

both PSpace-complete

3.1.2 Query

A query is an open formula of first order logic denotes as {−→x | φ (−→x)} where

φ (−→x) is a FOL-formula with free variables −→x . Given an interpretation I, qI is

3.2. RESOLUTION-BASED QUERY REWRITING 15

the set of tuples of domains elements that, when assigned to the free variables,

make the formula φ true in I (Calvanese et al., 2007).

A conjunctive query (CQ) q is a query of the form {−→x | ∃−→y .conj (−→x ,−→y)},
where conj (−→x ,−→y) is a conjunction of atoms, with free variables −→x and −→y .

Moreover, a union of conjunctive queries (UCQ) q is a query of the form−→x | ∨
i=1,...,n

∃−→yi .conji (−→x ,−→yi)

.

We can also use the standard datalog notation to denote these queries. For

example, a conjunctive query q = {−→x | ∃−→y .conj (−→x ,−→y)} is denoted in datalog

notation as q (−→x) ← conj (−→x ,−→y). Moreover, a union of conjunctive query with

the form written above can be written as q = {q1, . . . , qn} (Calvanese et al., 2007).

Given a query q and a KB K, the answer to q over K is the set ans (q,K) of

tuples −→a of constants appearing in K such that −→aM ∈ qM, for every model M
of K (Calvanese et al., 2007).

Later on, this is actually just the same as the Datalog, which is described

in 3.1, we can denote the query as H ← B1, . . . Bn, this is done just to easily

separate each atom in the body of the query.

3.2 Resolution-Based Query Rewriting

As mentioned above, our evaluation will be done on RDL which is based on

resolution. Since there are several RDL used in our query rewriting, one for each

family of description logics we use, we will have to have the translation DL-axioms

for each family, respectively to the clause used in the resolution.

Here, we use var (C) to denote the number of variable in clause C. Then,

depth of a term is defined as follow: (i) depth (t) = 0 if t is either constant or vari-

able, (ii) depth (f (t1, . . . , tn)) = 1 + max (depth (t1) , . . . , depth (tn)). The depth

of an atom is defined as depth (P (t1, . . . , tm)) = max (depth (t1) , . . . , depth (tm))

while the depth of a Horn clause C = B1, . . . , Bk → H is defined as depth (C) =

max (depth (H) , depth (B1) , . . . , depth (Bk)).

Table 3.1, 3.2, and 3.3 show the correspondency, respectively, between DL-

Lite+ axiom and DL-Lite+ clause, as given in Pérez-Urbina et al. (2008b), be-

tween ELHI axiom and ELHI clause, as given in Pérez-Urbina et al. (2010) and

Pérez-Urbina et al. (2008a), and between DL-LiteR axiom and DL-LiteR clause,

as given in Pérez-Urbina et al. (2009a).

3.3 Query Rewriting on Description Logics

The query rewriting used by RDL is based on Resolution with Free Selection

(RFS). Resolution with Free Selection is a well-known calculus that can be used

16 CHAPTER 3. QUERY REWRITING

DL-Lite+ Clause DL-Lite+ Axiom

A (a) A (a)

P (a, b) P (a, b)

A2 (x)← A1 (x) A1 v A2

P (x, f (x))← A1 (x)
A1 v ∃P.A2

A2 (f (x))← A1 (x)

A (x)← P (x, y) ∃P v A
A2 (x)← P (x, y) , A1 (y) ∃P.A1 v A2

P2 (x, y)← P1 (x, y) P1 v P2

A2 (b)← A1 (a)

A3 (x)← A2 (f (x)) , A1 (x)

QP (t)← L (ti)

Table 3.1: Correspondency between DL-Lite+ clause with DL-Lite+ axiom

Note: A,A1, A2, and A3 are atomic concepts, while P, P1, and P2 are atomic roles, QP

is a query, and L is one or more role or concepts, or both. For the arguments, x and
y are variables, a and b are constants, t can be zero to finitely many arguments, while
ti can be either one or two arguments, only. Each function in clause T2 A1 v ∃P.A2

is unique. For each clause C of type Q1, (i) var (C) ≤ var (QC), (ii) depth (C) ≤
max (1, var (QC)− var (C)), and (iii) if a variable x occurs in a functional term in C, x
occurs in all functional terms in C.

to decide satisfiability on a set of Horn clauses. The calculus is parameterized

by a selection function S that assigns to each Horn clause C a nonempty set of

atoms such that either S (C) = {H} or S (C) ⊆ {Bi}. The atoms in S (C) are

said to be selected in C. The basis of the resolution is as follow:

A← B1 ∧ . . . ∧Bi ∧ . . . ∧Bn C ← D1 ∧ . . . ∧Dm

Aσ ← B1σ ∧ . . . ∧Bi−1σ ∧Bi+1σ ∧ . . . ∧Bnσ ∧D1σ ∧ . . . Dnσ

The two clauses above are premises, and the clauses below is the result, or can

be called a resolvent. WLOG, we can assume that the two premises do not have

variable in common. Also we have that σ = MGU (Bi, C). Set of Horn clauses

LP is saturated by R if for every P1, P2 ∈ LP , we have resolvent PR of P1 and P2,

the set LP contains a clause equivalent to PR up to variable renaming. Clause

C is derivable from LP by R if C ∈ LPR. Moreover, WLOG, we can say that

the two premises do not share the same variable, and if there is, we can easily

rename it on one of the premise.

The complete resolution defined on RDL can be found on the papers given in

Pérez-Urbina et al. (2008b), Pérez-Urbina et al. (2008a), and Rosati (2007).

3.4. REQUIEM 17

ELHI Clause ELHI Axiom

A (a) A (a)

P (a, b) P (a, b)

A2 (x)← A1 (x) A1 v A2

A3 (x)← A2 (x) , A1 (x) A1 uA2 v A3

P (x, f (x))← A1 (x)
A1 v ∃P.A2

A2 (f (x))← A1 (x)

P (f (x) , x)← A1 (x)
A1 v ∃P−.A2

A2 (f (x))← A1 (x)

A2 (x)← P (x, y) , A1 (y) ∃P.A1 v A2

A2 (x)← P (y, x) , A1 (y) ∃P−.A1 v A2

P2 (x, y)← P1 (x, y) P1 v P2 or P−1 v P
−
2

P2 (x, y)← P1 (y, x) P1 v P−2 or P−1 v P2

QP (t)← L (ti)

Table 3.2: Correspondency between ELHI clause with ELHI axiom

Note: A,A1, and A2 are atomic concepts, while P, P1, and P2 are atomic roles, QP is
a query, and L is one or more role or concepts, or both. For the arguments, x and y
are variables, a and b are constants, t can be zero to finitely many arguments, while
ti can be either one or two arguments, only. Each function in clause T2 A1 v ∃P.A2

is unique. For each clause C of type Q1, (i) var (C) ≤ var (QC), (ii) depth (C) ≤
max (1, var (QC)− var (C)), and (iii) if a variable x occurs in a functional term in C, x
occurs in all functional terms in C.

3.4 REQUIEM

REQUIEM (REsolution-based QUery rewrIting for Expressive Models) is the

implementation of query rewriting technique RDL developed by Urbina et al. at

the Oxford University Computing Laboratory.

3.4.1 Query Produced by REQUIEM

Given ELHI TBoxes, the query rewriting done by REQUIEM will produce dat-

alog queries, given DL-LiteR TBoxes, the query rewriting done by REQUIEM

will produce a union of conjunctive query, and given DL-Lite+ TBoxes, the query

rewriting done by REQUIEM will produce a union of conjunctive query and a

linear datalog. In this Subsection, we will explain a bit why the queries produced

are as they are.

For query rewriting applied for these three families of description logics, we

may say that ELHI is the most difficult among them, since, although there is a

possibility of adding the negation on the right-hand side of intensional assertion

18 CHAPTER 3. QUERY REWRITING

DL-LiteR Clause DL-LiteR Axiom

A (a) A (a)

P (a, b) P (a, b)

A2 (x)← A1 (x) A1 v A2

P (x, f (x))← A (x) A v ∃P
P (x, f (x))← A1 (x)

A v ∃P.A1
A2 (f (x))← A1 (x)

P (f (x) , x)← A (x) A v ∃P−

P (f (x) , x)← A1 (x)
A v ∃P−.A1

A2 (f (x))← A1 (x)

A (x)← P (x, y) ∃P v A
A (x)← P (y, x) ∃P− v A

P2 (x, y)← P1 (x, y) P1 v P2 or P−1 v P
−
2

P2 (x, y)← P1 (y, x) P1 v P−2 or P−1 v P2

QP (t)← L (ti)

Table 3.3: Correspondency between DL-LiteR clause with DL-LiteR axiom

Note: A,A1, and A2 are atomic concepts, while P, P1, and P2 are atomic roles, QP is a
query, and L is one or more role or concepts, or both. For the arguments, x and y are
variables, a and b are constants, t can be zero to finitely many arguments, while ti can
be either one or two arguments, only.

on DL-LiteR or express the disjointness, which is not in ELHI, it is not used to

rewrite the query. Moreover, this kind of intensional assertion will only be used

for consistency checking in the end.

Thus, for rewrite the query, we may say that DL-LiteR is an ELHI without

the possibility of adding qualified existential restriction on the left-hand side and

no disjunction on the left-hand side, while disjunction on the right-hand side is

easily constructed by two intensional assertions.

Then, DL-Lite+ is an ELHI without the possibility of adding inverse role

and no disjunction on the left-hand side on intensional assertion. While, same

with DL-LiteR, adding disjunctioness on the right-hand side is easily constructed

by two intensional assertions.

Chapter 4

Datalog Engines and RDBMSes

Used

In this Chapter, we will describe how we evaluate the query rewriting done using

the RDL by several datalog engines and relational DBMSes. We will also justify

the choice of these engines. Beside, since the result of query rewriting using

REQUIEM will not be a SQL, we will provide the detailed translation from each

possible results of rewritten query into SQL, so that the results produced can be

easily transformed into SQL and later, executed by relational DBMSes used.

4.1 Datalog Engine

In this Section, we will provide several datalog engines, including their capabilities

and features. Moreover, we will also provide the reasons why these engines are

chosen for the evaluation of the query rewriting RDL.

4.1.1 XSB

In this Subsection, we will give a brief explanation about what XSB is, and why

we choose this Datalog engine over other engines available. Most of the material

here is taken from Swift et al. (2011), Sagonas et al. (1994).

XSB∗ is an in-memory deductive database engine, of which the implementa-

tion derives from Warren Abstract Machine. XSB began from a Prolog founda-

tion, and traditional Prolog systems are known to have serious deficiencies when

used as database systems. XSB has a fundamental bottom-up extension, intro-

duced through tabling (or memoing), which makes it appropriate as an underlying

query engine for deductive database systems.

∗http://xsb.sourceforge.net/

19

http://xsb.sourceforge.net/

20 CHAPTER 4. DATALOG ENGINES AND RDBMSES USED

This tabling system will eliminate the redundant computation on the same

query, moreover, the existence of tabling will make XSB able to compute all

modularly stratified datalog programs in polynomial time, w.r.t. data complexity.

Also, XSB offers an alternative approach to creating a deductive database

system. Rather than depending on rewriting techniques, it extends Prolog SLD

resolution in two ways: (i) adding tabling to make evaluations finite and non-

redundant on datalog, and (ii) adding a scheduling strategy and delay mechanisms

to treat general negation efficiently.

Unlike XSB, most of the datalog engines used an extension of the magic set

technique (Bancilhon et al., 1986), which was quite well-known for answering

query, that was executed using bottom-up approach, to a top-down approach, for

several query given. This is one reason why we would like to use XSB, because

it is different to another similar system, moreover we want to know how effective

the tabling is on answering query for ontology, which has incomplete database.

4.1.2 LDL++

In this Subsection, we will give a brief explanation about what LDL++ is, the

feature it has and why we choose this Datalog engine. Most of the material here

is taken from Arni et al. (2003, 1993).

LDL++ † is a deductive database system, of which the design is inspired from

its predecessor, LDL (Chimenti et al., 1990). This system is focused on advanced

development from the previous one.

One feature that is developed in LDL++ is the possibility to create a func-

tional constraint on the rule of the program. With this functional constraint (by

the use of choice), user can limit the result, they expect to output. Example 3

gives a nice application how this feature can be useful.

Example 3. Given facts as follow:

student(’JimBlack’,ee,senior).

professor(ohm,ee).

professor(bell,ee).

and rule as follow:

advisor(S,P) :- student(S,Majr,Yr), professor(P,Majr)

Query advisor(’JimBlack’,P)? will return two answers, which we do not want,

because none of the student may have more than an advisor‡. The possibility of

adding a choice here will limit this.

†http://www.cs.ucla.edu/ldl/
‡This is not 100% true in the real life, but we use this just for our case

http://www.cs.ucla.edu/ldl/

4.1. DATALOG ENGINE 21

advisor(S,P) :- student(S,Majr,Yr), professor(P,Majr),

choice((S),(P))

This means the functional dependency S → P, where one S may only have one P

as the result from the rule.

Another feature of LDL++ is the implementation of intelligent backtracking.

Imagine we have the execution tree, if we are failed on one branch, with intelligent

backtrack we can “jump” from one branch of execution to more than one level of

the root, just to avoid the obviously failed execution on other branches. Example

4 explains how this actually works.

Example 4. Given query

q(x,y) :- b1(x),p(x,y),b2(x).

Let us assume that the data we have is as follow

b1(A1). b1(A2). b2(A2).

p(A1,B1). p(A1,B2). p(A1,B3). p(A2,B1). p(A2,B2).

Without intelligent backtracking, after assigning x with A1, it will assign y

with B1, and fails in b2, the problem is, it operates backtracking, where y is

changed into B2, and fails again in b2, and yet another backtrack, changing y

into B3, fails again, and in the end changing x and success in this time. We can

see that several backtracks are useless since the value of variable changed is not

the cause of failure on the query.

With intelligent backtracking, the first time it fails on b2, it will “jump” and

backtrack to b1, which is the cause of failure. On the much bigger database, this

will be really a huge efficiency of time consumption on answering a query.

On the other hand, which is the difference between LDL++ and XSB, the

system in LDL++ is still using magic set technique (Bancilhon et al., 1986).

Moreover, although it still uses the magic set, it has already implemented the

more specialized methods for left-linear and right-linear rules.

The possibility of doing the intelligent backtracking, the ability of doing the

specialized method for left-linear and right-linear rules, yet the difference of hav-

ing no tabling are the reasons why we choose this system. We will need to evaluate

how affecting these three things on answering a query for an ontology given to

the system.

4.1.3 DLV

DLV, or a disjunctive datalog system is a deductive database system based on

disjunctive logic programming. It was created by Italian and Austrian research

team from University of Calabria and Vienna University of Technology.

22 CHAPTER 4. DATALOG ENGINES AND RDBMSES USED

The DLV system includes several front-ends to deal with specific applications

on knowledge representation and reasoning, which are:

1. Support for inheritance. This makes DLV system more and more like a

semi object oriented system rather than only a datalog engine.

2. K planning system.

3. SQL frontend.

One of the speciality of DLV system is that it can accept a disjunctive on the

head part of a rule. One of the example is

a ^ b :- c.

means, if c true, either a or b (or both) must be true.

Because of the possibility of having disjunction on the head part of the rule,

there are several types of reasoning can be follow from DLV system, which are:

1. Brave Reasoning. Brave (or credulous) reasoning is a reasoning such that, if

there is a possibility to give a true value to two or more possibility predicates

or arguments, it will give true value to all of them, unless it is impossible to

give such a valuation. Because of this reasoning, given a non-negative query

and a non-negative program, brave reasoning will have the most possible

complete answer.

2. Cautious Reasoning. Cautious reasoning is a reasoning such that, if there

is a possibility to give a true value to two or more possibility predicates or

arguments, it will be more cautious. Unless the system sure that one of

them is really true, it will give an all-false valuation to those possibilities.

One drawback of this reasoning is, there is not yet a capability to conclude

that there must be a true value on a group of predicates or arguments.

Example 5 gives us a good example on how this reasoning system is not

fully true yet.

Example 5. Given program as follow:

a ^ b :- c.

d :- a.

d :- b.

This cautious system will not conclude that d must be true, because it does

not know whether a or b is true, although it knows that one of them must

be true. On the other hand, brave reasoning may conclude that d must be

true since it concludes that both a and b are true.

4.2. RELATIONAL DATABASE MANAGEMENT SYSTEM 23

Although brave reasoning in the end gives the right result as we want, but we do

not want the fact that both a and b are true, still there is no reasoning in this

DLV system that contains the ignorance about predicates a and b, but is sure

about the correctness of d. Moreover, knowing both a and b true will give very

huge chance to get the wrong result, if given a different example other than one

used in 5.

The reason why we use this datalog engine as one of the engines to evaluate

the queries is, although does not use, we want to know how much the algorithm

to evaluate disjunctiveness can affect the speed and the memory usage.

4.2 Relational Database Management System

In this Section, we will provide several Relational DBMSes (RDBMSes), including

their capabilities and features. Moreover, we will also provide the reasons why

these DBMSes are chosen for the evaluation of the query rewriting RDL.

4.2.1 PostgreSQL

PostgreSQL is an open-source and RDBMS that is maintained by PostgreSQL

Global Development Group. It was firstly released on June, 1989, and now the

latest stable version of this RDBMS is 9.0.4.

Compared to any other open-source RDBMS, it has arguably the most fea-

ture. Although actually we will not need them, one of the reason we choose Post-

greSQL is this, and most of the standard SQL-99 are accepted in PostgreSQL.

Beside, it is quite popular RDBMS, so we decide to use this RDBMS to represent

the open-source RDBMS.

4.2.2 DB2

DB2 is a proprietary RDBMS owned by IBM. Firstly released on 1983. Note

that, although it is a proprietary RDBMS, it has a free version, which is called

DB2 Express-C. Although this version is not as complete as the complete DB2,

but for our purpose to evaluate the query rewriting, DB2 Express-C is more than

enough. According to survey that was held by DC§, which is about Worldwide

Database Management Systems 20092013 Forecast and 2008 Vendor Shares, it

was ranked two on the DBMS marketing share, where the first position was for

Oracle database, and the third was Microsoft SQL Server.

One of the reason we choose DB2 instead of Oracle is the syntax of DB2 is

more standard, the standard is SQL-99, while on the other hand, Oracle database

has its own syntax, which is PL/SQL, that is quite different with the standard.

§http://www.idc.com/getdoc.jsp?containerId=219232

http://www.idc.com/getdoc.jsp?containerId=219232

24 CHAPTER 4. DATALOG ENGINES AND RDBMSES USED

Moreover, with Oracle, we will need to install its own JRE, which is more con-

sumption on the memory and harddisk space. For these reasons, we choose DB2

to represent the proprietary RDBMS, although the one we will use is not the

proprietary one, but the free version.

4.2.3 Apache Derby

The last RDBMS we will try to use for the evaluation of the query rewriting is

Apache Derby. It was maintained by Apache and first time released on 2004.

Now it has already version 10.6.1.0.

Apache Derby, unlike PostgreSQL and DB2, is an in-memory database. One

of the drawback of this is, of course, the number of data can be stored is very

limited. On the other hand, the speed of access is believed to be faster than ones

that are stored on disk. One other difference between this database with the two

formers is the language it was built is Java, while the first two are built in C and

C++.

One of the other reason why we choose this RDBMS is that because the syntax

it uses is exactly as IBM DB2 SQL Syntax. With this, it is easier to compare

between those two, and moreover, since IBM DB2 SQL Syntax is really similar to

the one that PostgreSQL has, it is also easy to compare, later, the performance

between Derby and PostgreSQL for our evaluation.

4.3 Translation to SQL

In this Section, we will provide the detailed translation from the result of query

rewriting, which can be either union of conjunctive query, linear datalog and

union of conjunctive query, or datalog program. With this, we can execute the

result produced by query rewriting on RDBMS we will use on our evaluation

technique.

4.3.1 Execution of Union of Conjunctive Queries in RDBMS

Having a union of conjunctive query, we can easily translate this into SQL. Before

going into detail, we will give a brief explanation about rectified datalog program.

One method of rectification of the rules can be seen on 6

Definition 2. The rules for predicate P are rectified when their heads are:

1. Identical, there is no variable difference between to the other

2. No constant argument

3. All variable are distinct

4.3. TRANSLATION TO SQL 25

Example 6. Given a datalog program as follow:

P (x, y)← Q (x, y)

P (x, z)← Q (x, y) , Q (y, z)

P (x, x)← R (x)

P (x, ‘a’)← Q (x, x)

We may change those rules to a rectified ones without changing the meaning

and the result once given a query. One of the possible rectified rules from the

above rules is as follow:

P (x, y)← Q (x, y)

P (x, y)← Q (x, z) , Q (z, y)

P (x, y)← R (x) , x = y

P (x, y)← Q (x, x) , y = ‘a’

It is easy to see that any datalog rules can be changed into a rectified ones.

Say, if we have a non-identical argument in one of the rule, we may easily rename

that rule, if we have a constant in the argument, we may change it into a variable

and putting the equivalence between the variable and the constant in the body

of the rule, and if we have two same variables on the arguments of the rule, we

may change one of them, and put the equivalence between those two variables.

To make our translation easier, we will have to make every rules produced by

query rewriting rectified.

One of the speciality of union of conjunctive query is that we do not need to

do any more reasoning for each query. In the other words, we may execute each

(conjunctive) query by doing a lookup-search on the table(s) and do the join

between the shared variable(s).

Given a query Q (x1, . . . , xn) ← P1 (x11 , . . . , xm1) , . . . , Pk (xk1 , . . . xkm), let

Bxi the first position of xi, the i-th argument of Q, in the body, w.r.t. the name

of the predicate of the body, the execution of the query can be seen on Figure

4.1.

Here, we denote execute as the function that execute the SQL query, also

well-known as a result set. Also, we will need to define what “minimal” pairs of

position is.

Definition 3. Given X = {x1, . . . , xn}, we define the minimal pairs as Xmin =

{(x1,1, x2,1) , . . . , (x1,k, x2,k)} where

• for each i, j, we have xi,j ∈ X

• for each xi, xj, we have either:

– (xi, xj) ∈ Xmin, or

26 CHAPTER 4. DATALOG ENGINES AND RDBMSES USED

function executeCQinSQL

input: a conjunctive query Q

output: result of execution in SQL

ans <- selection clause on SQL

for each argument x in Q do

ans <- ans + B(x)

ans <- ans + condition clause

for "minimal" pair position n and m, where the variable in n

equal to the variable in m do

ans <- ans + condition position n equal position m

return execute(ans)

Figure 4.1: Execution a Conjunctive Query in SQL

– there is a chain xk1 , . . . , xkp where (xi, xk1) ∈ Xmin or (xk1 , xi) ∈
Xmin, (xk1 , xk2) ∈ Xmin or (xk2 , xk1) ∈ Xmin, . . . ,

(
xkp , xj

)
∈ Xmin

or
(
xj , xkp

)
∈ Xmin.

• there is no Xmin2 ⊂ Xmin, in which Xmin2 is minimal pairs of X too.

After that, given union of conjunctive query UCQ Σ, where Σ = {Q1, . . . , Qn}
and Qi, for each i, is a query, the execution of Σ in SQL is as shown on Figure

4.2

function executeUCQinSQL

input: union of conjunctive queries UQ

output: result of execution in SQL

res <- empty result

for each query Q in UQ

res <- union between execute(ans) and translateCQToSQL(Q)

return res

Figure 4.2: Execute a Union of Conjuntive Queries in SQL

With that execution, we have already defined the complete definition of exe-

cution from union of cunjunctive query using SQL query, and the execution can

be done in RDBMS.

4.3.2 Execution of Linear Datalog and Datalog Query in RDBMS

Unlike translation from Union of Conjunctive Query which is simpler, a linear

datalog and a general datalog may contain a (linear) recursivity inside it. With

4.4. STORING THE KNOWLEDGE BASE 27

this, we have to make sure that for every atom inside, we have already had the

whole data for the atom, so here we will generate the fixpoint for each atom

asked, especially if there is a recursivity for the atom.

The complete execution function is as shown in 4.3, where the function to

generate the fix point is as shown in 4.4.

function executeDatalogInSQL

input: Datalog Queries Q and Datalog Program DP

output: result of execution in SQL

res <- empty result

for each query Q1 in Q do

for each atom P in Q1 do

query <- generateFixPoint(P, DP)

ans <- union between ans and query

return ans

Figure 4.3: Execution of a Datalog Query in SQL

function generateFixPoint

input: Atom A, Datalog Program DP

output: result of execution in SQL

res <- empty result

do

ans <- executeUCQinSQL(DP[A])

resbefore <- res

res <- union between res and ans

while res <> resbefore

return res

Figure 4.4: Generation of the Fixpoint for Atom

Here, we denote DP[A] as rules in DP where predicate A appears as its head.

4.4 Storing the Knowledge Base

In this Section, we will briefly describe about the method we store the knowledge

base. Here, there will be difference between storing on datalog engine and on

RDBMS, because the syntax of datalog engine is more similar to the syntax of

the result produced by query rewriting.

28 CHAPTER 4. DATALOG ENGINES AND RDBMSES USED

4.4.1 Storing the Knowledge Base on Datalog Engine

Storing knowledge base, i.e., the facts and rules, into datalog engines can be said

as effortless since the fact and the rule are part of the datalog and datalog engines

can easily process them as the query given.

4.4.2 Storing the Knowledge Base on RDBMS

Unlike on a Datalog engine, where we can store the knowledge base as it is, on

RDBMS there might be several possible ways on how we store the knowledge

base, especially on the different schema for it. For example, given facts (EDBs)

A/1 and P/2, where N/k defines a predicate N having k arguments, at least there

are three ways on storing it, which are (i) The ‘normalized’ one, where we create

two tables, A and P , table A has a column and table P has two columns, (ii)

The ‘semi-normalized’, where we still have two tables, A, and P , but each only

has a column, and the arguments will be put together, separated by a separator,

usually a comma, or (iii) The ‘unnormalized’, where we will only have one table,

named table EDB, and everything is stored in a column, as it is written on

the Datalog, note that these are only several possibilities and there are some

other ways storing the knowledge base. Here, we are more interested on how the

performance comparison between those, since the ‘normal’ must not be faster

that the others. In other words, we want to know how influential the schema of

the database to the performance of the query evaluation.

Chapter 5

Comparison of Query Evaluation

In this Chapter, we will do the complete evaluation over rewritten query, and

use it to compare the efficiency of execution on the query rewriting for several

Datalog engines and RDBMSes. Moreover, this will be related to which kind

of description logic family is used, what the type of the query is, the schema of

how we store the data, which can be different for RDBMS, and also what kind

of ontology is used.

5.1 Evaluation Mechanism

In this section, we will explain the complete procedure, step by step, of our

evaluation over the ontologies given and the query rewritten.

The whole evaluation was done on a notebook BenQ Joybook S42, using

Microsoft Windows R© 7, 32-bit as the Operating System, with Intel R© Core
TM

2

Duo CPU @ 2.26 GHz as the processor and having 3.00 GB of RAM.

5.1.1 Obtain the Ontology

Since the rewriting technique we use is RDL that has been implemented in RE-

QUIEM, we mostly use the ontology that has been evaluated, for the query rewrit-

ing, in REQUIEM. Moreover, we will still need to use several other queries, since

ones used in REQUIEM mainly used there to compare their rewriting technique,

RDL , with another rewriting technique proposed by Calvanese et al, which is

PerfectRef (Calvanese et al., 2007), which is published as the result on their paper

in Pérez-Urbina et al. (2009b), the ontologies can be seen in the Appendix A.

As we can see on the ontology, there are several several new auxiliary predi-

cates AUX, the explanation of these variables is as follows. Let us see one of several

knowledge base containing the auxiliary predicates, as shown in Figure 5.1.

29

30 CHAPTER 5. COMPARISON OF QUERY EVALUATION

AUX5(X) ← Organization(Y), worksFor(X,Y)

Employee(X) ← AUX5(X), P erson(X)

Figure 5.1: Existence of Auxiliary Predicate

This auxiliary predicates come because of the existence of null predicates. We

can see those two knowledge base as follow. “If X, known as a person, works in

Y and Y is an organization, then X is an employee”. We see that this kind of

rule is impossible to in one rule, since in the normal datalog program, which may

contains more than two predicates as the body, these rules can be rewritten as

Employee(X) ← Organization(Y), worksFor(X,Y), P erson(X). Also we may

also see how these rules are actually written on XML-format ontology, as shown

in the Figure 5.2.

<owl:Class rdf:ID="Employee">

<rdfs:label>Employee</rdfs:label>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction>

<owl:onProperty rdf:resource="#worksFor" />

<owl:someValuesFrom>

<owl:Class rdf:about="#Organization" />

</owl:someValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Figure 5.2: Representation of Null Predicates on XML-Format Ontology

We can see that to create this kind of ontology, it is not enough to create

one rule, since it would be an intersection between one class containing only

one element, or predicate, to another class containing restriction of value on an

argument.

Also, there are several functions inside the argument of the predicate, which

are f0, f1, f2, The explanation of these arguments is as follows. Let us

see one of several knowledge base containing the auxiliary predicates, as shown

in Figure 5.3.

This function inside the predicate of an argument comes because there is an

dependency between one variable on the right-hand side (body) of a rule to one

variable on the left-hand side (head) of the same rule, on two different rules. In

this case, we can see that if there is a graduate student, he must take a course,

5.1. EVALUATION MECHANISM 31

GraduateCourse(f0(X)) ← GraduateStudent(X)

takesCourse(X, f0(X)) ← GraduateStudent(X)

Figure 5.3: Existence of Function as Argument

and that course must be a graduate course. The representation of these two rules

in XML-Format Ontology can be seen on Figure 5.4.

<owl:Class rdf:ID="GraduateStudent">

<rdfs:label>graduate student</rdfs:label>

<rdfs:subClassOf rdf:resource="#Person" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#takesCourse" />

<owl:someValuesFrom>

<owl:Class rdf:about="#GraduateCourse" />

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 5.4: Representation of Variable Dependency in XML-Format Ontology

We can see that to create this kind of ontology, we need a restriction of a

class, in this case GraduateStudent has to be restricted into two classes, which

are takesCourse and GraduateCourse.

5.1.2 Create the Representative Query

Because we all already have several well known ontologies, as stated in Subsection

5.1.1, we also use the queries that stated there. To create a representative query,

we change several queries because it has to contain all of the possibility rewriting

technique we want to use. Moreover, this little adjustment needed because we

want to cover all the possible Description Logics as written in Chapter 2. All the

queries we use can be seen in the Appendix B.

5.1.3 Rewrite the Query

This is when we really use REQUIEM for our evaluation. Given ontology having

format RDF/OWL and the query, this system will create result, depend to what

32 CHAPTER 5. COMPARISON OF QUERY EVALUATION

the family of Description Logics the input ontology is, as stated in Subsection

3.4.1.

5.1.4 Generate the Data

We will use the data generator provided by SyGENiA∗ (Synthetic GENerator of

instance Axioms). This tool for generating the data is created after the published

paper about idea of making the random, complete, and “representative” data by

Stoilos et al. in Stoilos et al. (2010). We will not write the data here or on

the ontology since everytime we create the data, it will always change from one

time to another time. To not make the process becomes too long, but to give a

possibility of randomness, we make around 250-400 data for each ontology. The

number can be different for one generation of the data to the other.

5.1.5 Configuration of the Engines

Although a lot of engines is used to evaluate the queries given, there is no changing

needed to all of them. We just need to install them appropriately, given the

database name correspondingly to ones we want to use, and use them as it is.

Problem with this engines are, while there is no problem for the database engines,

there are several problems with datalog engines since most of them can only be

used with one or two specific operating system, and we have to configure them

all, if we want to use them, not in the engines themselves, but on the codes. In

this case, since we just make sure this program works on our computer, we do

not yet create the program to make sure that all the process can work on the

other

For the other configuration, beside using the default configuration as it is

given by the engines, we also use the most precise result, e.g., in some engines

it is possible that the result given are more than one, we will just use ones that

give result most precisely, i.e, contained in all the results that can be given. If

there is no such result, we can be sure that there is no result for the given query

on our program.

5.2 Result of The Evaluation

We will point several aspects in which the query can be different in one engine

to the others. We will separate each measurement by the result of the query

produced after apply the query rewriting. Here, beside comparing the result of

these 7 engines we use, we also want to know how the result if there is no query

rewriting.

∗http://code.google.com/p/sygenia/

http://code.google.com/p/sygenia/

5.2. RESULT OF THE EVALUATION 33

We execute each query 5 times to each ontology and each engine, the result

written on the C are the averages of the middle three, where we avoid the fastest

and slowest result, the most consuming and least consuming memory, and we

also round up the usage of the memory to the nearest natural number. For the

memory usage, the method used to find how much the memory usage is by finding

its highest point of memory usage, not the average of the memory usage along

the process of the execution of the program.

5.2.1 Correctness

Here, we will explain the result obtained from the evaluation, using the correct-

ness as the point of view. It is really necessary that this part of evaluation be

the main consideration when using an engine for our knowledge base and also

incomplete database, because given a wrong result, there is no use having the

other criteria of evaluation true.

After all the executions of the queries on the program, we know that there

is big differences between using query rewriting and not using query rewriting.

All the results from query rewriting giving the right result, while on the other

hand, there is no execution in program without query rewriting can be finished,

since all got an error. This error occurs because there is no possibility, both in

datalog engine, or other engine we create combining relational database and java

program that can handle functional argument inside the predicate. Because of

this, no program can be solved, unless if the query asked by the user contains

no predicate that is related to any of the functional argument, so there must be

no linking between the predicates asked in the query to any predicates that has

functional argument, by any rules or chain of rules.

5.2.2 Time Measurement

Here, we will explain the result obtained from the evaluation, using time mea-

surement as the point of view. Note that we put the time on the first line of the

code and we put the end of time counter at the end of the code, so this time

measurement not only measured those time needed to query rewriting, if there is

any, but all time needed for reading and parsing the content of the files, writing

into the files, generate the data, etc., are also included in this time measurement

we use.

After all the executions of the queries on the program, we have quite dif-

ference time measurements for the results given. We may see that there are

huge differences between the time needed to execute a query in datalog engines,

which are much faster, than the time needed to execute a query in database en-

gines, this is because our algorithm to execute the query on database engine is

34 CHAPTER 5. COMPARISON OF QUERY EVALUATION

still quite straight-forward, in a quite modest and brute force way, without any

optimization.

Moreover, we may say that the query rewriting is less effective for the queries

that are less complicated, while on the other hand, it gives quite advantages on

behalf of time usage when the query is quite complicated. These results can be

seen on Figure 5.5 or the complete data can also be seen on Appendix C.

0	

10	

20	

30	

40	

50	

60	

Q1	 Q2	 Q3	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	

XSB	

LDL++	

DLV	

PostgreSQL	

IBM	 DB2	

Apache	 Derby	

Figure 5.5: Evaluation Result of The Time Measurement

5.2.3 Memory Consumption

Here, we will explain the result obtained from the evaluation, using memory

consumption as the point of view.

After all executions of the queries on the program, we are sure that there is

no big difference on memory consumption among them all. To make sure that

the result of memory consumption in a case was not just a coincidence result, we

execute each queries several times on each engines and we make sure that there

is no other software or process, except ones that have to be there, that is also

running. As we can see on the Appendix C, the result was all about 10 to 50 MB.

We can see from 5.6 and also from the appendix, since we cannot know how much

of the process actually is used by each of the engine, we just measured the data

on the consumption of memory by the Eclipse, which is the program we use to

perform the evaluation to the queries given. Beside that, we may easily say that

the memory usage in datalog engine is much less than one used by a database

engine. This is probably because it is needed to run one or more software or

service to execute a query using datalog engine, while on the other hand, the

5.2. RESULT OF THE EVALUATION 35

datalog engines all need less space and even they are really built for answering

query that has form like deductive database.

0	

10	

20	

30	

40	

50	

60	

Q1	 Q2	 Q3	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	

XSB	

LDL++	

DLV	

PostgreSQL	

IBM	 DB2	

Apache	 Derby	

Figure 5.6: Evaluation Result of The Memory Consumption

Chapter 6

Conclusion and Future Work

In this section, we will write several conclusions regarding the system that have

been built, also the results and how the result could be used later, and the future

works that still related to this topic.

6.1 Conclusion

After seeing the program and the result of the evaluation, we may conclude several

things, as follows:

1. Creating an engine for deductive database is not easy. We can see from

the result, comparing the speed of result in datalog engines that have been

there to other engines combining relational database and java program, the

first engines work much faster, even more than two times faster than ones

that we create.

2. Query rewriting makes us getting the answer. Without query rewriting,

our program would not get the answer for the program. There is still no

possible way to get answer to the query without using query rewriting.

3. Using small data, only 250-400, it is still faster to use in memory database,

i.e, Apache Derby, than using real database relational, i.e, PostgreSQL or

IBM DB2, this is probably because of the input output access time to

memory database still needs much less time than doing the same thing to

relational database.

4. If the data are big enough, using real relational database instead of memory

database might be more useful, because the capability to manage all the

data.

37

38 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future Work

Here, we will explain several future works that is related to this topic. Some

future works that can be done regarding this thesis are as follows:

1. Creating a better, much more optimized query answering using relational

database for storing the database. With this, it might possible that we

get a faster result on answering using SQL and relational database than

just use datalog engine, especially when we exploit all the capabilities of a

relational database management system, which can handle large database,

or using transactions to manage the possibility of changing or updating the

data, or creating some views for some queries that are called a lot of time,

so we can save some times.

2. If it is possible, answering the queries asked without using any query rewrit-

ing. This cannot be done if there is no other technique beside query rewrit-

ing. It is obvious that without doing any technique, i.e., no early processing

on database and knowledge base, we will not get the result, but it might

be possible to get the answer without adding the number of query we have

to run on our program.

3. Comparing this query rewriting with another query rewriting. REQUIEM

developers have claimed, and proven, that their algorithm is better than

another query rewriting, i.e., Perfect Reformulation, in terms of number of

the queries generated after doing all the process. However, we do not know

whether the queries produced by this query rewriting are simpler than ones

in Perfect Reformulation. It is a possibility that they have less number of

query, while on the other hand, their queries are more complex than ones

in other query rewriting technique.

Bibliography

Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. Linearisability on Datalog

Programs. Theor. Comput. Sci., 308(1-3):199–226, 2003. [cited at p. 14]

Natraj Arni, KayLiang Ong, Shalom Tsur, and Carlo Zaniolo. LDL++: A Second

Generation Deductive Databases Systems. Technical report, Technical report, MCC

Corporation, 1993. [cited at p. 20]

Natraj Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The De-

ductive Database System LDL++. TPLP, 3(1):61–94, 2003. [cited at p. 20]

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications, 2003. Cambridge University Press. ISBN 0-521-78176-0. [cited at p. 7]

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope. In

Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages 364–369. Profes-

sional Book Center, 2005. ISBN 0938075934. [cited at p. 9]

François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets

and other strange ways to implement logic programs. In PODS, pages 1–15. ACM,

1986. ISBN 0-89791-179-2. [cited at p. 20, 21]

Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting Queries Using Views

in Description Logics. In PODS, pages 99–108. ACM Press, 1997. ISBN 0-89791-910-6.

[cited at p. 5]

Sebastian Brandt. On Subsumption and Instance Problem in ELH w.r.t. General TBoxes.

In Volker Haarslev and Ralf Möller, editors, Description Logics, volume 104 of CEUR

Workshop Proceedings. CEUR-WS.org, 2004. [cited at p. 9]

Andrea Cal̀ı, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas Pieris.

Datalog+/-: A Family of Logical Knowledge Representation and Query Languages

for New Applications. In LICS, pages 228–242. IEEE Computer Society, 2010. ISBN

978-0-7695-4114-3. [cited at p. 14]

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and

Riccardo Rosati. Tractable Reasoning and Efficient Query Answering in Description

39

40 BIBLIOGRAPHY

Logics: The DL-Lite Family. J. Autom. Reasoning, 39(3):385–429, 2007. [cited at p. 5,

7, 10, 15, 29]

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, An-

tonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and

Databases: The DL-Lite Approach. In Sergio Tessaris, Enrico Franconi, Thomas

Eiter, Claudio Gutierrez, Siegfried Handschuh, Marie-Christine Rousset, and Re-

nate A. Schmidt, editors, Reasoning Web, volume 5689 of Lecture Notes in Computer

Science, pages 255–356. Springer, 2009. ISBN 978-3-642-03753-5. [cited at p. 7]

Danette Chimenti, Ruben Gamboa, Ravi Krishnamurthy, Shamim A. Naqvi, Shalom

Tsur, and Carlo Zaniolo. The LDL System Prototype. IEEE Trans. Knowl. Data

Eng., 2(1):76–90, 1990. [cited at p. 20]

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and

Expressive Power of Logic Programming. ACM Comput. Surv., 33(3):374–425, 2001.

[cited at p. 14]

Hervé Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and Databases: A Deductive

Approach. ACM Comput. Surv., 16(2):153–185, 1984. [cited at p. 14]

Georg Gottlob and Christos H. Papadimitriou. On the Complexity of Single-rule Datalog

Queries. Inf. Comput., 183(1):104–122, 2003. [cited at p. 14]

Carsten Lutz, David Toman, and Frank Wolter. Conjunctive Query Answering in the

Description Logic EL Using a Relational Database System. In Craig Boutilier, editor,

IJCAI, pages 2070–2075, 2009. [cited at p. 5]

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Rewriting Conjunctive Queries

under Description Logic Constraints. In Andrea Cal̀ı, Georg Gottlob, Laks V.S. Lak-

shmanan, and Davide Martinenghi, editors, Proc. of the Int. Workshop on Logic in

Databases (LID 2008), Rome, Italy, May 19–20 2008a. [cited at p. 5, 9, 15, 16]

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Rewriting Conjunctive Queries over

Description Logic Knowledge Bases. In Klaus-Dieter Schewe and Bernhard Thalheim,

editors, SDKB, volume 4925 of Lecture Notes in Computer Science, pages 199–214.

Springer, 2008b. ISBN 978-3-540-88593-1. [cited at p. 5, 15, 16]

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient Query Answering for

OWL 2. In Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Di-

ana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, International

Semantic Web Conference, volume 5823 of Lecture Notes in Computer Science, pages

489–504. Springer, 2009a. ISBN 978-3-642-04929-3. [cited at p. 5, 15]

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. A Comparison of Query Rewriting

Techniques for DL-Lite. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ul-

rike Sattler, editors, Description Logics, volume 477 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009b. [cited at p. 29]

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable Query Answering and

Rewriting Under Description Logic Constraints. J. Applied Logic, 8(2):186–209, 2010.

[cited at p. 5, 15]

BIBLIOGRAPHY 41

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, and Riccardo Rosati. Linking Data to Ontologies. J. Data Semantics, 10:

133–173, 2008. [cited at p. 7]

Riccardo Rosati. On Conjunctive Query Answering in EL. In Diego Calvanese, Enrico

Franconi, Volker Haarslev, Domenico Lembo, Boris Motik, Anni-Yasmin Turhan, and

Sergio Tessaris, editors, Description Logics, volume 250 of CEUR Workshop Proceed-

ings. CEUR-WS.org, 2007. [cited at p. 5, 16]

Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. XSB as an Efficient

Deductive Database Engine. In Richard T. Snodgrass and Marianne Winslett, editors,

SIGMOD Conference, pages 442–453. ACM Press, 1994. [cited at p. 19]

Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks. How Incomplete Is Your

Semantic Web Reasoner? In Maria Fox and David Poole, editors, AAAI. AAAI Press,

2010. [cited at p. 32]

Terrance Swift, David S. Warren, Konstatinos Sagonas, Juliana Freire, Prasad Rao,

Baoqiu Cui, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve Dawson, and

Michael Kifer. The XSB System Version 3.3: Programmer’s Manual. Web page:

http: // xsb. sourceforge. net , 2011. [cited at p. 19]

http://xsb. sourceforge. net

Appendices

43

Appendix A

Knowledge Base Used

In this appendix, we give all the knowledge base we use. Note that there is no

fixed database, since the database are all generated using the SyGENiA as stated

on Subsection 5.1.4. We also do not use some data from the ontology given, if

and only if those data are useless to our query answering program, e.g., data

like Professor is subclass of TopClass can be ignored because everything

is subclass of Topclass.

We use three ontologies, those are university bench ontology, stock exchange,

and path5, each represents different complexity handled by the database. All the

three ontologies can be found on the REQUIEM webpage.

The ontology for university bench is as follow:

worksFor(X,Y) ← headOf(X,Y)

degreeFrom(X,Y) ← mastersDegreeFrom(X,Y)

memberOf(X,Y) ← worksFor(X,Y)

degreeFrom(X,Y) ← undergraduateDegreeFrom(X,Y)

member(Y,X) ← memberOf(X,Y)

memberOf(Y,X) ← member(X,Y)

degreeFrom(X,Y) ← doctoralDegreeFrom(X,Y)

hasAlumnus(Y,X) ← degreeFrom(X,Y)

degreeFrom(Y,X) ← hasAlumnus(X,Y)

University(X) ← mastersDegreeFrom(Y,X)

Organization(X) ← affiliatedOrganizationOf(Y,X)

Work(X) ← Research(X)

Article(X) ← JournalArticle(X)

University(X) ← undergraduateDegreeFrom(Y,X)

45

46 APPENDIX A. KNOWLEDGE BASE USED

University(X) ← degreeFrom(Y,X)

Course(X) ← listedCourse(Y,X)

Person(X) ← publicationAuthor(Y,X)

Research(X) ← researchProject(Y,X)

Publication(X) ← publicationResearch(X,Y)

Publication(X) ← publicationDate(X,Y)

Organization(X) ← University(X)

Schedule(X) ← listedCourse(X,Y)

Person(X) ← doctoralDegreeFrom(X,Y)

Person(X) ← mastersDegreeFrom(X,Y)

Organization(X) ← affiliateOf(X,Y)

AdministrativeStaff(X) ← ClericalStaff(X)

Organization(X) ← affiliatedOrganizationOf(X,Y)

GraduateCourse(f0(X)) ← GraduateStudent(X)

takesCourse(X, f0(X)) ← GraduateStudent(X)

TeachingAssistant(X) ← teachingAssistantOf(X,Y)

Publication(X) ← Specification(X)

Student(X) ← ResearchAssistant(X)

Organization(X) ← member(X,Y)

Research(X) ← publicationResearch(Y,X)

AdministrativeStaff(X) ← SystemsStaff(X)

Organization(X) ← Department(X)

Person(X) ← hasAlumnus(Y,X)

Software(X) ← softwareV ersion(X,Y)

ResearchGroup(X) ← researchProject(X,Y)

Publication(X) ← Manual(X)

Professor(X) ← advisor(Y,X)

Faculty(X) ← PostDoc(X)

Organization(X) ← College(X)

Organization(X) ← Institute(X)

Organization(X) ← Program(X)

ResearchGroup(f1(X)) ← ResearchAssistant(X)

worksFor(X, f1(X)) ← ResearchAssistant(X)

AUX3(X) ← College(Y), headOf(X,Y)

Dean(X) ← AUX3(X), P erson(X)

47

College(f2(X)) ← Dean(X)

headOf(X, f2(X)) ← Dean(X)

Person(X) ← Dean(X)

Faculty(X) ← Lecturer(X)

Person(X) ← GraduateStudent(X)

Course(X) ← teacherOf(Y,X)

Publication(X) ← UnofficialPublication(X)

Professor(X) ← tenured(X,Y)

Organization(X) ← orgPublication(X,Y)

Publication(X) ← publicationAuthor(X,Y)

Person(X) ← affiliateOf(Y,X)

Employee(X) ← AdministrativeStaff(X)

University(X) ← doctoralDegreeFrom(Y,X)

Software(X) ← softwareDocumentation(X,Y)

Person(X) ← advisor(X,Y)

Employee(X) ← Faculty(X)

Student(X) ← UndergraduateStudent(X)

Course(X) ← GraduateCourse(X)

AUX4(X) ← Course(Y), teachingAssistantOf(X,Y)

TeachingAssistant(X) ← AUX4(X), P erson(X)

Course(f3(X)) ← TeachingAssistant(X)

teachingAssistantOf(X, f3(X)) ← TeachingAssistant(X)

Person(X) ← TeachingAssistant(X)

Work(X) ← Course(X)

Publication(X) ← Book(X)

Organization(X) ← ResearchGroup(X)

Professor(X) ← V isitingProfessor(X)

Faculty(X) ← teacherOf(X,Y)

Professor(X) ← Dean(X)

University(X) ← hasAlumnus(X,Y)

AUX5(X) ← Organization(Y), worksFor(X,Y)

Employee(X) ← AUX5(X), P erson(X)

Organization(f4(X)) ← Employee(X)

worksFor(X, f4(X)) ← Employee(X)

Person(X) ← Employee(X)

48 APPENDIX A. KNOWLEDGE BASE USED

AUX6(X) ← Course(Y), takesCourse(X,Y)

Student(X) ← AUX6(X), P erson(X)

Course(f5(X)) ← Student(X)

takesCourse(X, f5(X)) ← Student(X)

Person(X) ← Student(X)

Person(X) ← degreeFrom(X,Y)

AUX7(X) ← Department(Y), headOf(X,Y)

Chair(X) ← AUX7(X), P erson(X)

Department(f6(X)) ← Chair(X)

headOf(X, f6(X)) ← Chair(X)

Person(X) ← Chair(X)

Publication(X) ← softwareDocumentation(Y,X)

Faculty(X) ← Professor(X)

Person(X) ← undergraduateDegreeFrom(X,Y)

Course(X) ← teachingAssistantOf(Y,X)

Person(X) ← member(Y,X)

Professor(X) ← FullProfessor(X)

Article(X) ← TechnicalReport(X)

Publication(X) ← Article(X)

Professor(X) ← Chair(X)

Publication(X) ← Software(X)

Publication(X) ← orgPublication(Y,X)

Article(X) ← ConferencePaper(X)

Professor(X) ← AssistantProfessor(X)

Professor(X) ← AssociateProfessor(X)

AUX8(X) ← Program(Y), headOf(X,Y)

Director(X) ← AUX8(X), P erson(X)

Program(f7(X)) ← Director(X)

headOf(X, f7(X)) ← Director(X)

Person(X) ← Director(X)

AUX0(X) ← 1(X)

Organization(X) ← AUX0(Y), subOrganizationOf(Y,X)

AUX1(X) ← 1(X)

1(X) ← AUX1(Y), subOrganizationOf(Y,X)

AUX2(X) ← 0(X)

49

0(X) ← AUX2(Y), subOrganizationOf(Y,X)

The explanation of predicates AUX is already written on Subsection 5.1.1.

Also, the explanation of new function such as f0 is already written on the same

Subsection. The other ontology we used is stock exchange, as follows:

hasStock(Y,X) ← belongsToCompany(X,Y)

belongsToCompany(Y,X) ← hasStock(X,Y)

listsStock(Y,X) ← isListedIn(X,Y)

isListedIn(Y,X) ← listsStock(X,Y)

involvesInstrument(Y,X) ← isTradedIn(X,Y)

isTradedIn(Y,X) ← involvesInstrument(X,Y)

hasAddress(Y,X) ← inverseofhasAddress(X,Y)

inverseofhasAddress(Y,X) ← hasAddress(X,Y)

tradesOnBehalfOf(Y,X) ← usesBroker(X,Y)

usesBroker(Y,X) ← tradesOnBehalfOf(X,Y)

Transaction(X) ← Acquisition(X)

isExecutedBy(X, f0(X)) ← Transaction(X)

Address(X) ← inverseofhasAddress(X,Y)

Person(X) ← Investor(X)

tradesOnBehalfOf(X, f1(X)) ← StockBroker(X)

Company(X) ← hasStock(X,Y)

FinantialInstrument(X) ← Stock(X)

Person(X) ← PhysicalPerson(X)

Investor(X) ← isExecutedFor(Y,X)

Transaction(X) ← isExecutedBy(X,Y)

StockBroker(X) ← StockTrader(X)

Stock(X) ← isListedIn(X,Y)

Address(X) ← hasAddress(Y,X)

Stock(X) ← hasStock(Y,X)

LegalPerson(X) ← Company(X)

belongsToCompany(X, f2(X)) ← Stock(X)

StockBroker(X) ← Trader(X)

isListedIn(X, f3(X)) ← Stock(X)

Dealer(X) ← Trader(X)

50 APPENDIX A. KNOWLEDGE BASE USED

Trader(X) ← Dealer(X)

Transaction(X) ← involvesInstrument(X,Y)

Transaction(X) ← isExecutedFor(X,Y)

Company(X) ← belongsToCompany(Y,X)

involvesInstrument(X, f4(X)) ← Transaction(X)

StockExchangeMember(X) ← isExecutedBy(Y,X)

Transaction(X) ← Offer(X)

Transaction(X) ← isTradedIn(Y,X)

Stock(X) ← listsStock(Y,X)

FinantialInstrument(X) ← involvesInstrument(Y,X)

StockExchangeMember(X) ← StockBroker(X)

hasAddress(X, f5(X)) ← Person(X)

Person(X) ← LegalPerson(X)

StockTrader(X) ← Trader(X)

Trader(X) ← StockTrader(X)

Person(X) ← inverseofhasAddress(Y,X)

StockBroker(X) ← Dealer(X)

inverseofhasAddress(X, f6(X)) ← Address(X)

Person(X) ← StockExchangeMember(X)

Stock(X) ← belongsToCompany(X,Y)

Person(X) ← hasAddress(X,Y)

isExecutedFor(X, f7(X)) ← Transaction(X)

StockExchangeList(X) ← isListedIn(Y,X)

Same as the first ontology we have, the explanation of new functions inside

the argument has been explained in Subsection 5.1.1. Last, we have the ontology

for path5 as follows:

Path4(f0(X)) ← Path5(X)

edge(X, f0(X)) ← Path5(X)

Path1(f1(X)) ← Path2(X)

edge(X, f1(X)) ← Path2(X)

Path2(f2(X)) ← Path3(X)

edge(X, f2(X)) ← Path3(X)

Path3(f3(X)) ← Path4(X)

51

edge(X, f3(X)) ← Path4(X)

edge(X, f4(X)) ← Path1(X)

And we have also the explanation for the function inside the predicate covered

in Subsection 5.1.1.

Appendix B

Query Used

In this appendix, we give all the query we used to evaluate the performance of

the system we created. We try to create as representative query as possible for

each ontology we used. The query we use are as follows.

1. For the ontology university bench, we use 3 queries, which are:

Q(X,Y, Z) ← Student(X), advisor(X,Y), FacultyStaff(Y),

takesCourse(X,Z), teacherOf(Y,Z), Course(Z).

Q(X) ← Person(X), worksFor(X,Y), University(Y),

hasAlumnus(Y,X).

Q(X,Y, Z,W, V) ← Professor(X), worksFor(X,V), name(X,Y),

emailAddress(X,Z), telephone(X,W).

2. For the ontology stack exchange, we use 3 queries, which are:

Q(X,Y, Z) ← FinantialInstrument(X), belongsToCompany(X,Y),

Company(Y), hasStock(Y,Z), Stock(Z).

Q(X,Y, Z) ← Person(X), hasStock(X,Y), Stock(Y),

isListedIn(Y, Z), StockExchangeList(Z).

Q(X,Y, Z,W) ← FinantialInstrument(X), belongsToCompany(X,Y),

Company(Y), hasStock(Y, Z), Stock(Z),

isListedIn(Y,W), StockExchangeList(W).

53

54 APPENDIX B. QUERY USED

3. For the ontology path5, we use 3 queries also, which are:

Q(X) ← edge(X,Y), edge(Y,Z), edge(Z,W).

Q(X) ← edge(X,Y), edge(Y,Z), edge(Z,W), edge(W,V).

Q(X) ← edge(X,Y), edge(Y,Z), edge(Z,W), edge(W,V), edge(V,U).

Appendix C

Full Results of the Evaluation

In this appendix, we give all the results from the evaluation we make, this result

contains the correctness, the time performance, and the memory usage for all 9

queries in 3 ontologies using all the 6 engines we use. The complete results are

as follow:

1. Ontology university bench

a) First query, number of data or facts created: 273.

XSB, with query rewriting: Correct, time: 8.23 seconds, memory: 12

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 7.99 seconds, memory:

14 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 8.78 seconds, memory: 18

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 21.13 seconds, mem-

ory: 22 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 19.95 seconds, memory: 41

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 16.01 seconds,

memory: 20 MB.

Apache Derby, without query rewriting: Error.

b) Second query, number of data or facts created: 341.

XSB, with query rewriting: Correct, time: 4.13 seconds, memory: 11

55

56 APPENDIX C. FULL RESULTS OF THE EVALUATION

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 3.86 seconds, memory:

12 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 5.32 seconds, memory: 15

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 13.75 seconds, mem-

ory: 21 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 16.28 seconds, memory: 27

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 8.51 seconds,

memory: 15 MB.

Apache Derby, without query rewriting: Error.

c) Third query, number of data or facts created: 266.

XSB, with query rewriting: Correct, time: 6.88 seconds, memory: 14

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 6.37 seconds, memory:

17 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 9.12 seconds, memory: 16

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 15.00 seconds, mem-

ory: 20 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 14.25 seconds, memory: 38

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 12.15 seconds,

memory: 13 MB.

Apache Derby, without query rewriting: Error.

2. Ontology stock exchange

a) First query, number of data or facts created: 391.

XSB, with query rewriting: Correct, time: 15.21 seconds, memory: 15

MB.

57

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 17.43 seconds, memory:

14 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 14.25 seconds, memory: 22

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 37.14 seconds, mem-

ory: 31 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 39.15 seconds, memory: 48

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 31.13 seconds,

memory: 20 MB.

Apache Derby, without query rewriting: Error.

b) Second query, number of data or facts created: 301.

XSB, with query rewriting: Correct, time: 11.22 seconds, memory: 13

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 12.41 seconds, memory:

14 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 16.78 seconds, memory: 11

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 31.13 seconds, mem-

ory: 19 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 28.77 seconds, memory: 38

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 24.33 seconds,

memory: 16 MB.

Apache Derby, without query rewriting: Error.

c) Third query, number of data or facts created: 277.

XSB, with query rewriting: Correct, time: 19.21 seconds, memory: 17

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 22.31 seconds, memory:

15 MB.

58 APPENDIX C. FULL RESULTS OF THE EVALUATION

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 25.13 seconds, memory: 16

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 48.61 seconds, mem-

ory: 24 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 52.13 seconds, memory: 44

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 41.17 seconds,

memory: 22 MB.

Apache Derby, without query rewriting: Error.

3. Ontology path5

a) First query, number of data or facts created: 388.

*** XSB, with query rewriting: Correct, time: 4.21 seconds, memory:

10 MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 5.13 seconds, memory:

13 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 6.13 seconds, memory: 17

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 14.21 seconds, mem-

ory: 21 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 16.27 seconds, memory: 35

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 12.33 seconds,

memory: 15 MB.

Apache Derby, without query rewriting: Error.

b) Second query, number of data or facts created: 305.

XSB, with query rewriting: Correct, time: 4.71 seconds, memory: 10

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 4.88 seconds, memory:

13 MB.

LDL++ , without query rewriting: Error.

59

DLV, with query rewriting: Correct, time: 6.21 seconds, memory: 12

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 18.15 seconds, mem-

ory: 24 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 17.29 seconds, memory: 48

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 13.68 seconds,

memory: 17 MB.

Apache Derby, without query rewriting: Error.

c) Third query, number of data or facts created: 331.

XSB, with query rewriting: Correct, time: 11.13 seconds, memory: 13

MB.

XSB, without query rewriting: Error.

LDL++ , with query rewriting: Correct, time: 9.51 seconds, memory:

9 MB.

LDL++ , without query rewriting: Error.

DLV, with query rewriting: Correct, time: 16.61 seconds, memory: 14

MB.

DLV, without query rewriting: Error.

PostgreSQL, with query rewriting: Correct, time: 38.13 seconds, mem-

ory: 37 MB.

PostgreSQL, without query rewriting: Error.

DB2, with query rewriting: Correct, time: 29.41 seconds, memory: 35

MB.

DB2, without query rewriting: Error.

Apache Derby, with query rewriting: Correct, time: 25.13 seconds,

memory: 26 MB.

Apache Derby, without query rewriting: Error.

List of Figures

4.1 Execution a Conjunctive Query in SQL 26

4.2 Execute a Union of Conjuntive Queries in SQL 26

4.3 Execution of a Datalog Query in SQL 27

4.4 Generation of the Fixpoint for Atom 27

5.1 Existence of Auxiliary Predicate . 30

5.2 Representation of Null Predicates on XML-Format Ontology 30

5.3 Existence of Function as Argument . 31

5.4 Representation of Variable Dependency in XML-Format Ontology . . 31

5.5 Evaluation Result of The Time Measurement 34

5.6 Evaluation Result of The Memory Consumption 35

61

List of Tables

3.1 Correspondency between DL-Lite+ clause with DL-Lite+ axiom . . . 16

3.2 Correspondency between ELHI clause with ELHI axiom 17

3.3 Correspondency between DL-LiteR clause with DL-LiteR axiom . . . 18

62

	Contents
	1 Introduction
	1.1 Structure of Thesis

	2 Description Logics
	2.1 DL-LiteR
	2.2 ELHI
	2.3 DL-Lite+

	3 Query Rewriting
	3.1 Datalog
	3.1.1 Linear Datalog
	3.1.2 Query

	3.2 Resolution-Based Query Rewriting
	3.3 Query Rewriting on Description Logics
	3.4 REQUIEM
	3.4.1 Query Produced by REQUIEM

	4 Datalog Engines and RDBMSes Used
	4.1 Datalog Engine
	4.1.1 XSB
	4.1.2 LDL++
	4.1.3 DLV

	4.2 Relational Database Management System
	4.2.1 PostgreSQL
	4.2.2 DB2
	4.2.3 Apache Derby

	4.3 Translation to SQL
	4.3.1 Execution of Union of Conjunctive Queries in RDBMS
	4.3.2 Execution of Linear Datalog and Datalog Query in RDBMS

	4.4 Storing the Knowledge Base
	4.4.1 Storing the Knowledge Base on Datalog Engine
	4.4.2 Storing the Knowledge Base on RDBMS

	5 Comparison of Query Evaluation
	5.1 Evaluation Mechanism
	5.1.1 Obtain the Ontology
	5.1.2 Create the Representative Query
	5.1.3 Rewrite the Query
	5.1.4 Generate the Data
	5.1.5 Configuration of the Engines

	5.2 Result of The Evaluation
	5.2.1 Correctness
	5.2.2 Time Measurement
	5.2.3 Memory Consumption

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	A Knowledge Base Used
	B Query Used
	C Full Results of the Evaluation
	List of Figures
	List of Tables

