
European Master In Computational Logic

Master Thesis

An AntiPattern-Based OWL

Ontology Debugging Tool

by

Mohamad Fauzan Tahwil

Supervisor: Prof. Oscar Corcho Garćıa

Co-Supervisor: Dr. Catherine Roussey

Madrid, June 2010

As Sunnah : Utlubul ilma minal mahdi ilal lahdi - Seek knowledge from the

cradle to the grave

Contents

Contents i

1 Introduction 5

2 State of the Art 9

2.1 OWL and Protégé . 9

2.2 OPPL . 11

2.3 Antipattern . 13

2.4 LintRoll . 14

3 Work Objectives 19

4 OPPL-Based AntiPatterns 23

4.1 Guideline DisjointnessOfComplement (DOC) 26

4.2 Guideline SomeMeansAtLeastOne (SMALO) 26

4.3 Guideline MinIsZero (MIZ) . 28

4.4 Guideline DisjointnessofComplementonSubclass (DCS) 28

5 Lint-Based AntiPatterns 31

5.1 Detectable Logical AntiPatterns (DLAP) 32

5.1.1 AntiPattern AndIsOr (AIO) 32

5.1.2 AntiPattern OnlynessIsLoneliness (OIL) 35

5.1.3 AntiPattern OnlynessIsLonelinessWithInheritance (OILWI) 37

5.1.4 AntiPattern UniversalExistence (UE) 39

5.1.5 AntiPattern UniversalExistenceWithInheritance (UEWI) . 41

5.1.6 AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)

. 43

5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)

. 45

5.1.8 AntiPatterns hasValueisOneValue (VOV) 48

5.1.9 AntiPattern EquivalenceIsDifference (EID) 51

i

ii CONTENTS

5.1.10 AntiPattern EquivalencesAreDifferences (EAD) 54

5.1.11 AntiPattern SubclassIsDifference (SID) 55

5.1.12 AntiPattern SubclassesAreDifferences (SAD) 56

5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MM-

CaR) . 57

5.1.14 AntiPattern Existential&CardinalityRestrictionWithInverseProperty

(ECRWIP) . 60

5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER) . . 62

5.2 Cognitive Logical AntiPatterns (CLAP) 66

5.2.1 AntiPattern SynonymOrEquivalence (SOE) 66

5.2.2 AntiPattern SumOfSom (SOS) 68

5.3 Guidelines . 69

5.3.1 Guideline UnionInEquivalency(UIE) 69

5.3.2 Guideline Existential & Cardinality Restriction(ECR) . . . 70

5.3.3 Guideline Distributivity On Subclass (DOS) 72

6 Apero Plug-in 75

6.1 Analysis . 75

6.2 Design . 77

6.2.1 Configuration . 77

6.2.2 Transformation Process Design 79

6.2.3 Detection Process Design 79

6.2.4 Execution Process Design 80

6.3 Implementation . 82

6.3.1 Environment . 82

6.3.2 Antipattern Implementation 83

6.3.3 Transformation Process Implementation 89

6.3.4 Detection Process Implementation 89

6.3.5 Execution Process Implementation 91

6.4 Debugging Strategy Based on Antipatterns 94

7 Evaluation 97

7.1 Evalution Setup . 97

7.2 Evalution Test Case and Plan . 97

7.3 Evaluation Result . 98

8 Conclusion and Future Work 105

Bibliography 107

A EBNF Production Rules for OPPL [10] 111

A.1 Statements . 111

A.2 Manchester OWL Syntax axioms 112

CONTENTS iii

A.3 Manchester OWL Syntax with variables entities 113

B List of Method in OWLFunc Class 115

List of Symbols and Abbreviations 121

List of Figures 122

List of Tables 124

Abstract

Debugging an OWL ontology manually is difficult and a time-consuming task,

even for ontology engineering and knowledge representation experts. Some de-

bugging tools are very dependent on to the reasoners that may take several hours

to detect inconsistencies. Current debugging tools do not provide enough infor-

mation. None of these tools can detect modeling errors and suggest a better

form of expression. By continuing previous research on antipatterns, we want

to make an effort in this thesis to build Apero, a Protégé plug-in that offers an

ontology debugging tool based on the use of antipatterns. Apero is able to detect

inconsistencies without the use of a reasoner, shows possible modeling errors and

suggests an alternative form of expression but more accurate for encoding the

same knowledge.

1

Acknowledgements

The first thanks goes to my supervisor, Prof. Oscar Corcho Garćıa, for all his

support and guidance. He was always ready (even during holiday season, week

ends, and nights) to help me with all my difficulties. I really appreciate his

support in this thesis as well as in practical work.

I would like to express my gratitudes to all my professors in UPM and TUD.

Special thanks go to Prof. Steffen Hölldobler for giving me opportunity in this

master program, Prof. Francisco Bueno to support my education in UPM.

I would like to express my thanks to all my friends in UPM and TUD. To

Catherine for always providing me whatever sources I need in order to complete

this work and giving me feedback. To Evgeny, Seif and Milka for sharing fun

time with me in Dresden. Thank you to my flat mates (Luis, Ruben and Sinan)

for being my family here. Also Freddy, Irene and Anton have been keeping me

to speak Indonesian Language and supporting my thesis.

To my friend and lecturer, Prof. Lim Yohanes Stefanus from University of

Indonesia. Thanks for supporting me in the very first place so that I am able to

get scholarship in this master program.

To the people I miss during my master study, my father, mother and sisters,

for giving me big support to my success.

To my beloved wife who always accompanies me from loneliness although she

is be in different place. Her kindness, support and patience make me see the

future more beautiful.

This thesis is supported by Erasmus Mundus scholarship financial grant.

3

Chapter 1

Introduction

In recent years there has been a considerable amount of interest in the area of

debugging and repair of OWL ontologies. The process of debugging ontology is

as important as debugging program code. They are vital to get rid of faults. In

ontology debugging, the faults are marked as undesirable entailments. In par-

ticular, the entailment that a concept (class) is unsatisfiable is almost always

undesired. Nevertheless, undesirable entailments are not limited to unsatisfiable

classes. Other undesirable entailments may be caused by unintended and conflict-

ing to the modeler’s understanding of the domain, for instance certain subclass

relation between classes. Ontology debugging is the process of finding the causes

of an undesirable entailment, understanding these causes, and modifying the on-

tology so that there is no longer the undesirable entailment [8].

It is a tremendously hard task discovering the cause of errors or faults. DL

(Description logic) reasoners can only supply lists of unsatisfiable classes when

checking satisfiability (consistency). They present no extra explanation about

why a class is unsatisfiable. An unsatisfiable class could be a derived or root

unsatisfiable class. A derived unsatisfiable class is a class whose satisfiability

depends on another class, otherwise it is classified to a root unsatisfiable class.

We have to examine and fix root unsatisfiable classes first. For instance, A is

unsatisfiable class, B v A and C v ∃R.A imply B and C as derived unsatisfiable

classes.

Users manually do the process of ontology debugging to find the reason of the

unsatisfiability of the class. However, users do not always have enough experience

with DL. Thus, it will be a hard task for them without adequate supporting

tools. It will be more complicated when the ontology is large and complex. Even

experienced ontology engineers will have difficulty to find the causal error. The

ability to provide this causal error can be a measurement of powerfulness of DL

reasoners [23].

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot of Protégé OWL Debugger

When we are focusing on DL formalization and OWL implementation, there

are several options of ontology debugging tool, that have proven their effectiveness

in different domains, as follows:

• Protégé OWL Debugger

Protégé OWL Debugger [9] is a tool to help people debug OWL-DL on-

tologies. As its name suggests, it is incorporated in Protégé as a plug-in.

It provides conditions that cause a class be unsatisfiable. It also guides

the user through the various debugging steps. Unfortunately, it requires to

start the OWL reasoner (e.g RACER or FaCT++) and classify the ontol-

ogy first. This process will become a time-consuming task if we face a very

large and complex ontology. The Screenshot of this tool is shown with the

Figure 1.1. ∗

• SWOOP

SWOOP [15] is a standalone tool to create, edit, and debug OWL ontologies.

Swoop uses a DL reasoner (e.g. Pellet) to determine which named concepts

in the ontology are unsatisfiable. Thus, it has the same problem than the

∗The source is available at http://www.co-ode.org/downloads/owldebugger/

7

Figure 1.2: Screenshot of SWOOP

Figure 1.3: Screenshot of RepairTab

Protégé OWL Debugger. The Screenshot of this tool is shown with the

Figure 1.2. †

• RepairTab

RepairTab [16] is a Protégé plugin that suggests alternatives to resolve the

identified inconsistencies. It shows those entailments that would be lost if

the recommended solution was applied. However, the current solution is

restricted to remove part from the existing axioms or to replace a class by

one of its super classes. The Figure 1.3 is a screenshot of RepairTab with

Mad Cow ontology as example.

Reviewing the previous research on antipattern [4], we concentrate our study

†The source is available at http://www.mindswap.org/2005/debugging/

8 CHAPTER 1. INTRODUCTION

on real ontologies that have been developed by domain experts ‡, who are not

necessarily too familiar with DL, and hence can misuse DL constructors and

misunderstand the semantics of some OWL expressions which may bring us to

an unwanted unsatisfiability classes. For instance, HydrOntology is a medium-

sized OWL ontology (165 classes) developed by a domain expert in the area of

Hydrology [3]. The first version of this ontology has a total of 114 unsatisfiable

classes.

To find the reasons for their unsatisfiability, domain experts find it difficult to

understand the information provided by the debugging systems used ([9], [15]) on

root unsatisfiability class. In addition, sometimes during the debugging process,

the generation of justification for unsatisfiability took several hours. This made

these tools hard to use. It confirms the result described in [20]. As a result,

we found out that in several occasions the domain experts were just changing

axioms from the original ontology in a somehow random way. They even change

the intended meaning of the definitions instead of correcting errors in their for-

malization.

By using this ontology and several other real ontologies, in this thesis we

identify common unsatisfiability-leading patterns used by the domain experts

when implementing OWL ontologies. There will be also a solution that can

be used by domain experts to debug their ontology. At the end, we provide

some hints on how to organize the iterative ontology debugging process using a

combination of debugging tools and patterns.

This thesis is organized as follows:

1. Chapter 2 presents state of the art and background theory of related tech-

nologies we use in our work.

2. Chapter 3 presents the objectivity of our work, including the assumption

and limitations.

3. Chapter 4 presents OPPL-based antipattern.

4. Chapter 5 presents Lint-based antipattern.

5. Chapter 6 presents Apero Plugin, including its analysis, design and imple-

mentation process.

6. Chapter 7 presents the evaluation results of Apero plugin.

7. Chapter 8 presents the conclusions on our work and some future works.

‡Domain expert is a person with special knowledge or skills in a particular area

Chapter 2

State of the Art

This chapter discusses the latest technology that we use or that we refer to in

this thesis.

2.1 OWL and Protégé

OWL is the most recent development in standard ontology languages, endorsed by

the World Wide Web Consortium (W3C) to promote the Semantic Web vision.

”An OWL ontology may include descriptions of classes, properties and their

instances. Given such an ontology, the OWL formal semantics specifies how to

derive its logical consequences, i.e. facts not literally present in the ontology, but

entailed by the semantics. These entailments may be based on a single document

or multiple distributed documents that have been combined using defined OWL

mechanisms” [13].

OWL has three sub languages as follows [13]:

1. OWL Lite.

OWL Lite has a classification hierarchy and simple constraint features. For

instance, cardinality constraints only allow cardinality values of 0 or 1.

2. OWL DL.

OWL DL has maximum expressiveness without losing computational com-

pleteness and decidability of reasoning systems. Completeness means that

all entailments are guaranteed to be computed, whereas decidability means

that all computations will finish in finite time. OWL DL is so named due

to its correspondence with description logics, a field of research that has

studied a particular decidable fragment of first order logic.

9

10 CHAPTER 2. STATE OF THE ART

Figure 2.1: Screenshot of Protégé

3. OWL Full.

OWL Full has maximum expressiveness and the syntactic freedom of RDF

with no computational guarantees. For instance, a class can be treated

simultaneously as a collection of individuals and as an individual in its own

right.

Protégé is a free and open-source software that provides a user community

with a suite of tools to construct domain models and knowledge-based applica-

tions with ontologies. At its core, Protégé implements a rich set of knowledge-

modeling structures and actions that support the creation, visualization, and ma-

nipulation of ontologies in various representation formats [11]. The GUI (Graph-

ical User Interface) of Protégé is shown on the Figure 2.1.

There are several features that distinguish Protégé from other ontology editing

tools. Protégé has all of the following features that cannot be found on other tools:

• Intuitive and user-friendly GUI.

• Extensible plug-in architecture. It is easy to extend Protégé with plug-ins

designed for our domain and task.

Protégé supports OWL. It also has an extension (Protégé OWL editor) that

enables us to load and save ontologies and execute description logic classifiers.

Protégé can also be extended by way of a plug-in architecture and a Java-based

Application Programming Interface (API) for building knowledge-based tools and

applications.

2.2. OPPL 11

Axiom is a definition that associates class and property identifiers with specifi-

cations of their characteristics, and to give other logical information about classes

and properties [13]. Example of an axiom is ”AnimalLover equivalentTo Person

and hasPet min 3”

Syntax of OWL in Protégé uses Manchester OWL syntax. We will find the

use of OWL syntax itself in the owl file. Because of compactness, we will use

DL symbol as a tool to represent an OWL expression. The table 2.1 shows the

most common constructor in OWL, DL and Manchester OWL syntax ∗. Protégé

provides OWL API that enables developer to access all axioms and manipulate

them.

Table 2.1: Mapping of Syntax

Constructor OWL DL Manchester OWL Example
Symbol Syntax Keyword

Negation complementOf ¬C not not Child

Intersection intersectionOf C1 u ... u Cn and Doctor and Female

Union unionOf C1 t ... t Cn or Male and Female

Universal Restriction allV aluesFrom ∀R.C only hasSibling only woman

Existential Restriction someV aluesFrom ∃R.C some hasChild some man

Maximum Cardinality maxCardinality ≤ nR.C max hasChild max 3

Exact Cardinality exactCardinality = nR.C exactly hasChild exatcly 3

Minimum Cardinality minCardinality ≥ nR.C min hasChild min 3

Spesific Value hasV alue ∃ R.x value hasPlayer value zidane

Subclass subClassOf C1 v subClassOf Male subClassOf Human

Equivalence equivalenClass C1 ≡ C2 equivalentTo AnimalLover equivalentTo
Person and hasPet min 3

Disjointness disjointWith C1 u C2 v ⊥ disjointWith Dog disjointWith Cat

Reasoner is a piece of software that is able to detect inconsistencies, find

subclasses and detect trivially satisfiable class. Depending on the expressiveness

of OWL (OWL Lite or DL), a reasoner is either OWL Lite reasoner or DL-

reasoner. DL-reasoner also covers the Lite one. We exclude reasoner for OWL

Full in this thesis because of decidability reasons.

Protégé provides facility to use reasoner. Reasoner can be access from menu

[Reasoner >Classify] if a reasoner has been selected or [Reasoner >Reasoner-

Name] (see the Figure 2.2). After reasoning process is complete, Protégé will

mark every unsatisfiable class with red color.

2.2 OPPL

OPPL (Ontology Pre-Processor Language) is an abstract formalism that allows

manipulating OWL ontologies [14]. The version of the Ontology Pre-Processor

Language (OPPL) described here is the successor of the initial effort presented

in [7]. OPPL provides a plug-in for Protégé and API (Application Programming

∗Full list available in reference specs and in the Quick Reference Guide.
(see http://www.w3.org/2007/OWL/refcard)

12 CHAPTER 2. STATE OF THE ART

Figure 2.2: Reasoner in Protégé

Interface). As a plug-in, users can build and run OPPL statements. Meanwhile,

we can use the API of OPPL to run OPPL statements from our own application.

A generic OPPL statement will look as follows:

SELECT Axiom,....,Axiom

BEGIN

ADD | REMOVE Axiom

...

ADD | REMOVE Axiom

END

An OPPL statement is decomposable in the following sections:

1. Variable definition (before SELECT)

2. Selection (between SELECT and BEGIN)

3. Actions (between BEGIN and END)

The grammar of an OPPL statement is shown at the Appendix A. Vari-

ables can have the following types: CLASS, OBJECTPROPERTY, DATAPROP-

ERTY, INDIVIDUAL, and CONSTANT. Each variable type covers a possible

category of entities in the OWL specification. An entity here is a named object

or a constant. Therefore, an anonymous class description is not an acceptable

2.3. ANTIPATTERN 13

substitution for any variable type, including CLASS. This limitation has impor-

tant bearings on the possibility of building complete algorithms to execute an

arbitrary query in OPPL.

The following script is an example of OPPL statement:

?c1:CLASS, ?c2:CLASS

SELECT

?c1 subClassOf not ?c2

WHERE ?c1 != ?c2

BEGIN

remove ?c1 subClassOf not ?c2,

add ?c1 disjointWith ?c2

END;

2.3 Antipattern

We define antipatterns as patterns that appear obvious but are ineffective or far

from optional in practice, representing worst practice about how to structure and

build software [5]. We have also identified a set of patterns that are commonly

used by domain experts in their DL-formalization and OWL implementations,

and that normally result in unsatisfiable classes or modeling errors. Antipat-

terns come from a misuse and misunderstanding of DL expressions by ontology

developers. We categorize them into three groups:

• Detectable Logical Antipatterns (DLAP). They represent errors that DL-

reasoners and debugging tools normally detect.

• Cognitive Logical Antipatterns (CLAP). They represent possible modeling

errors that may be due to a misunderstanding of the logical consequences

of the used expression.

• Guidelines (G). They represent complex expressions used in an ontology

component definition that are correct from the logical and cognitive points

of view, but for which the ontology developer could have used other simpler

alternatives or more accurate ones for encoding the same knowledge.

An antipattern is constructed by a detection pattern and some recommenda-

tions to repair the pattern. To illustrate the pattern, we use DL symbols that have

the most compact form. We define formula here in this thesis as an expression

that is formed by DL symbols and terms in the ontology.

The following table is the catalogue of antipatterns that has been collected in

[5] (without their formalization of detection and recommendation):

14 CHAPTER 2. STATE OF THE ART

Table 2.2: Catalogue of antipattern in [5]

No Antipattern Description Category

1 AIO AndIsOr DLAP

2 OIL OnlynessIsLoneliness DLAP

3 UE UniversalExistence DLAP

4 UEWIP UniversalExistenceWithInverseProperty DLAP

5 EID EquivalenceisDifference DLAP

6 SOE SynonymOrEquivalence CLAP

7 DOC DisjointnessOfComplement G

8 DCC Domain&CardinalityConstraints G

9 DOC GroupAxioms G

10 DOC MinIsZero G

2.4 LintRoll

Lint in software means a program that is able to detect suspicious code that

leads to unexpected behavior or bugs [12]. LintRoll is the name of plug-in built

for Protégé that implements concept lint above. Therefore its main aim is to

provide facilities to highlight pitfalls or antipatterns in one’s ontologies. Lint

here is a pattern that can be built from either an OPPL statement or Lint-JAR.

A Lint-JAR is a lint implementation in Java Archive that we or some third party

created. †

The connection OPPL with Lint detection is quite natural. Users can now

declare what sort of axioms combinations are Lint and the OPPL engine will

individuate such situations in the target ontologies, when present. Furthermore,

users can now specify actions to undertake in case Lint is detected.

An OPPL Lint specification is made of the following components:

1. Name. A name must use English alphabet letters plus ”–” and ” ”

2. OPPL Script (see the OPPL Grammar on A)

3. Return Clause: ”RETURN” followed by a valid variable name defined in

the OPPL Script earlier.

4. Description: A natural language description of the Lint

Below there is an example of an OPPL Lint check already available in the

Protégé 4 plug-in:

Transitive property lint;

?x:OBJECTPROPERTY, ?y:OBJECTPROPERTY

†The source of LintRoll is available at
http://www.cs.man.ac.uk/ iannonel/lintRoll/downloads.html

2.4. LINTROLL 15

Figure 2.3: Screenshot of LintRoll

SELECT ?y subPropertyOf ?x, Transitive: ?y, Transitive: ?x WHERE ?x!= ?y

BEGIN

REMOVE Transitive: ?y

END;

RETURN ?y;

Lint that corrects the undesirable situation in which a transitive

object property is sub-property of another transitive object property

Users can add their own OPPL Lint checks. The OPPL Lint will be stored

in the active ontology and will be kept there so that it will be available during

its editing.

In order to create your own Lint-JAR, we have to implement Manchester

OWL Lint Framework. There are four components that we must implement as

follows:

1. Lint Interface

16 CHAPTER 2. STATE OF THE ART

This is the main component in the framework. When developing a lint one

must implement the following methods:

• detected() - In this method goes the actual code for verifying whether

the situation the Lint instance has to detect occurs or not. Developers

are supposed to return an implementation of LintReport containing

the result of the detection process.

• getDescription() - This method should return a String containing a

natural language description of the situation that the Lint detects

• getName(), setName() - These are mere access methods for the name

of the Lint used for display purposes

2. Lint Pattern Interface

A LintPattern is an interface that stands for a generic pattern matched

across a set of OWLOntology instances. We need to implement method

matches(). The implementation of this method that should an instance im-

plementing the PatternReport interface containing the Set of OWLObject

which are matching this particular pattern.

3. Report (LintReport & PatternReport) interfaces

Both LintReport and PatternReport are interfaces containing the results of

matching respectively a Lint or a LintPattern implementations. A developer

needs to implement the following methods for both of them:

• getAffectedOntologies() - It returns the ontologies affected (in which

there are OWLObject instances successfully matched) by the Lint

(LintPattern).

• getAffectedOWLObjects() - Given an instance of OWLOntology this

method should return the Set of OWLObject instances affected by

(successfully matching) the Lint (LintPattern) that generated this im-

plementation of this Report.

• isAffected(OWLOntology) should return true if the input OWLOn-

tology instance is affected by (contains at least an OWLObject in-

stance successfully matching) the Lint (LintPattern) that generated

this report.

• getLint()(getLintPattern()) - Should return the Lint (LintPattern)

that generated this Report

4. PatternBasedLint Interface This interface abstracts over the kind of Lint

implemented as a chain of LintPattern instances. The suggested semantics

is that a PatternBasedLint is detected when all its LintPatterns success-

fully match a common subset of OWLObject instances. In addition to

2.4. LINTROLL 17

those already described in Lint interface, a PatternBasedLint implementa-

tion should implements the getPatterns() method, which returns the Set of

LintPattern instances this Lint is built upon.

Chapter 3

Work Objectives

This chapter discusses the work objectives of the thesis. It observes approaches

to overcome problems that occur in the previous chapter. We present some

hypotheses that lead us to assumptions and limitations.

From the discussion of chapter Introduction and State of the art, we define

objective of this thesis as follows:

• to enrich the catalogue of antipattern by discovering new antipatterns.

The first version of the catalogue as displayed on Table 6.3 contains only

10 antipatterns and has proposed a categorization of them. In this thesis

we will perform a research to find new antipatterns.

A finding technique that we use is a manual ontology debugging in which

we expect to find some new antipatterns. The debugged ontology usually

has some inconsistent classes after we classify with a reasoner. We apply

the recommended action from the existing catalogue, and then we search

the root cause of the rest of inconsistent classes.

Once found, then we formalize it as detection of antipattern. The next step,

we propose some actions to recover the problem and confirm them to the

domain experts on what they really want. Later on, we formalize them as

recommendation of antipattern.

As we discussed, to debug ontology manually can be very hard even for

experts. Discovering an antipattern in a complex ontology may be diffi-

cult. But this finding will help a lot to solve the same problem in different

ontologies.

• to extend a formula representation of antipattern, so that a formula can

have better representation of every single antipattern that is closer to its

real data in an ontology.

19

20 CHAPTER 3. WORK OBJECTIVES

We introduce new symbols ∗ (star) and + (plus) in formulating antipatterns

to complete DL-symbols on the current representation. These new symbols

will explain every antipattern clearly. These are close to regular expressions,

because these describe a search pattern too.

• to propose classification of antipattern according to its implementation.

Aforementioned before, LintRoll is capable of detecting suspicious pattern

that very often leads to unexpected behavior or bug. A pattern in LintRoll

could be implemented in OPPL and Manchester OWL Lint Framework.

Furthermore, as an antipattern itself is obviously a pattern as well, we

want to classify an antipattern to either OPPL-based or any other imple-

mentation. We also want to make this new implementation be simpler than

the one that Manchester OWL Lint Framework offers.

• to suggest transformation rule of axioms as additional feature.

In order to help finding antipattern, we present an alternative way as a

transformation rule to convert an axiom to another axiom with expectation

that antipattern could be found. Indeed, this transformation will change

the ontology, but as a trade of, we found an antipattern. The final decision

must be returned to the ontology developer about whether his ontology

modeling is correct or not.

• to build a plug-in as antipattern debugging tool.

This debugging tool will solve time consumption issue and reduce complex-

ity in ontology debugging. We expect that it will offer a clear direction to

ontology developers.

• to compare the plug-in with another debugging tool.

We use SWOOP as debugging tool comparator. We expect that this com-

parison will be able to identify pros and cons of the plug-in.

• to suggest a debugging strategy based on antipatterns.

When debugging an ontology, ontology developers do some consecutive de-

bugging actions until they find the ontology free of antipatterns. They

select to focus on a certain antipattern, after that they go to another an-

tipattern and so on. We will see if this is possible to perform a strategy of

debugging.

Our hypotheses are:

• We are able to implement any antipatterns from the easiest way (OPPL)

to the most difficult way (Lint), regardless of the degree of complexity.

• The developed plug-in can support ontology developers to debug an ontol-

ogy effectively and efficiently.

21

Our assumptions are:

• The OPPL API works well, so it can fully support all functionality on the

plug-in.

• Validation of a recommendation that is given by the plug-in must be done

manually, so that participation of domain experts is needed, thus we assume

that every taken action is valid.

• OWL API that we use is built-in of Protégé. Users must take into account

the version of Protégé (at least its OWL API) is matched with what we use

in our development.

Our limitations are:

• Research on antipattern is not stopped at this thesis. New antipatterns

may be found in the future.

• We present a formula of antipattern on the plug-in but it will not affect the

result of antipattern finding.

• Naming of an antipattern from a version of catalogue to the newer one could

be changed. We cannot control if users want to change antipattern name

from the original distribution of plug-in. This way, we will not talk about

naming convention for antipattern.

• At times, an axiom transformation is needed. Since it is outside antipattern

concept, we only implement one transformation rule.

Chapter 4

OPPL-Based AntiPatterns

Debugging ontology manually has yielded some discovery of new antipatterns.

They will complete the old catalogue and the Table 4.1 shows our new catalogue

of antipatterns.

OPPL and Lint-Jar are able to implement all antipatterns in the Table 4.1

but OPPL has some limitations. Following are some reasons why an antipattern

could not be implemented by OPPL:

• Transitivity on subclass (v) and equivalence (≡) relation

• Number of operands on the union (t) and intersection (u) could be arbi-

trary

• Special actions such as counting frequency of concepts used and removing

a class

We cannot describe the transitivity on subclass and equivalence relation with

OPPL. Some antipatterns use transitivity. For instance, when we are checking

on the disjointness of two classes, we have to take into account the transitivity.

There are two types of disjointness namely direct and indirect disjointness. The

direct disjointness means there is a disjoint axiom that declares disjointness of

two classes. For instance in HydrOntology, we will find the following axioms:

• Disj(Aguas Continentales,Aguas Marinas);∗

• Disj(Aguas Subterráneas,Aguas Superficiales);

• Disj(Afluente,Glaciar);

∗In Protégé, it means Aguas Continentales disjointWith Aguas Marinas.

23

24 CHAPTER 4. OPPL-BASED ANTIPATTERNS

No Antipattern Description Category

1 AIO AndIsOr DLAP

2 OIL OnlynessIsLoneliness DLAP

3 OILWI OnlynessIsLonelinessWithInheritance DLAP

4 UE UniversalExistence DLAP

5 UEWI UniversalExistenceWithInheritance DLAP

6 UEWPI UniversalExistenceWithPropertyInheritance DLAP

7 UEWIP UniversalExistenceWithInverseProperty DLAP

8 VOV hasValueisOneValue DLAP

9 EID EquivalenceIsDifference DLAP

10 EAD EquivalenceAreDifferences DLAP

11 SID SubclassIsDifference DLAP

12 SAD SubclassAreDifferences DLAP

13 MMCAR MinimalMaximalCardinalityRestriction DLAP

14 ECRWIP Existential&CardinalityRestrictionWithInverseProperty DLAP

15 SOSER SumOfSomwithExactRestriction DLAP

16 SOE SynonymOrEquivalence CLAP

17 SOS SumOfSom CLAP

18 DOC DisjointnessOfComplement G

19 UIE UnionInEquivalency G

20 ECR Existential&CardinalityRestriction G

21 SMALO SomeMeansAtLeastOne G

22 MIZ MinIsZero G

23 DOS DistributivityOnSubclass G

24 DCS DisjointnessOfComplementonSubclass G

Table 4.1: New catalogue of antipattern

The indirect disjointness between two classes is not explicitly mentioned by a

disjoint axiom. It requires looking further on their superclass that possibly have

a direct disjointness. On the other hand, we could formalize it as follows:

C1 v+ C3;C2 v∗ C4;Disj(C3, C4); =⇒ Disj(C1, C2);
†

We use pattern C1 v+ C3 to describe that there is at least one subclass

relation involving either C1 or C3. For example, (1) C1 v C11;C11 v C3; and

(2) C1 v C12;C12 ≡ C3; belong to pattern C1 v+ C3. Meanwhile, we use

pattern C2 v∗ C4 to express that subclass relation could be absent. It also could

represent C2 and C4 are the same class. Examples for this pattern: (1) C2 ≡ C4;,

(2) C2 ≡ C21;C21 ≡ C4 and (3) C2 ≡ C21;C21 v C4.

By Venn Diagram Figure 4.1, it is obvious to prove the correctness of the

disjointness between two classes if it is classified to the indirect disjointness.

†Disj(C3, C4) is a direct disjointness

25

Figure 4.1: Indirect Disjointness of C1 and C2

Following is an example of the indirect disjointness:

• Disj(Aguas Superficiales,Aguas Marinas), because:

– Aguas Superficiales v Aguas Continentales;‡

– Disj(Aguas Continentales,Aguas Marinas);

Sometimes, a class is unsatisfiable because of an axiom that yields the in-

consistency originated from the ancestor of that class. This ancestor relation-

ship also represents the transitivity on subClassOf(v) and equivalentTo(≡) re-

lation. For instance in Computer Science Ontology, following axioms cause

LecturerTaking4Courses be unsatisfiable:

• LecturerTaking4Courses v = 4 takeCourse.>

• TeachingFaculty v ≤ 3 takeCourse.>

• LecturerTaking4Courses v Lecturer

• Lecturer v TeachingFaculty

OPPL could not provide a way in general to extract all axioms like on the

example above. We also cannot express the operand of the union (t) and inter-

section (u) with OPPL, because the number of operands is arbitrary and could

be any number. There is no way to create a general script that enables us to

inquiry from an ontology.

The current version of OPPL only supports actions for adding and removing

an axiom. How to remove a class is a thing that OPPL does not provide. On

all antipatterns in category DLAP and CLAP, we will find usability of pattern

transitivity, union, intersection and removing a class. Clearly according to some

of the aforementioned facts, OPPL cannot support all antipatterns in category

DLAP and CLAP.

On each OPPL-based antipattern below, we provide a script of OPPL to show

how an OPPL-based antipattern implemented. An OPPL script consists of three

‡In Protégé, it means Aguas Superficiales subClassOf Aguas Continentales.

26 CHAPTER 4. OPPL-BASED ANTIPATTERNS

parts: variable declaration, query and action§[14]. An antipattern can have more

than one recommendation. A recommendation will yield the action part on a

script. In this case, there is more than one action part of OPPL. Thus, we split

the script into as many as number of actions that each script only has different

on the action part.

4.1 Guideline DisjointnessOfComplement (DOC)

C1 ≡ not C2; (4.1)

The ontology developer may want to say that C1 and C2 cannot share in-

stances, instead of defining C1 as the logical negation of C2. Hence it could

be more appropriate to state that C1 and C2 are disjoint. The following is an

example of this antipattern in HydrOntology:

• Laguna Salada ≡ not Aguas Dulces

• Salt Lagoon ≡ not Fresh Water

We propose:

C1≡ not/////// C2;⇒ Disj(C1, C2); (4.2)

After applying the above recommendation, corrections to be applied are as

follows:

• Disj(Laguna Salada,Aguas Dulces);

• Disj(Salt Lagoon, Fresh Water);

The recommendation 4.2 yields a OPPL Script implementation for this an-

tipattern which is displayed on the code 1.

4.2 Guideline SomeMeansAtLeastOne (SMALO)

C1 v ∃R.C2;C1 v (≥ 1R.>); (4.3)

The cardinality restriction is superfluous, because if there is an existential

restriction that means that the cardinality restriction using the same property is

at least equal to 1. The ontology developer had created the axiom C1 v (≥ 1R.>)

first, to say that C1 should be defined by the R property. Next, he specialized

his definition and forgot to remove the first restriction. In HydrOntology, this

antipattern appears twice.

§Grammar of the OPPL script is available online at
http://oppl2.sourceforge.net/grammar.html.

4.2. GUIDELINE SOMEMEANSATLEASTONE (SMALO) 27

?c1:CLASS, ?c2:CLASS

SELECT

?c1 equivalentTo not ?c2

WHERE ?c1 != ?c2

BEGIN

remove ?c1 equivalentTo not ?c2,

add ?c1 disjointWith ?c2

END;

Code 1: DOC OPPL Script

• Estero v ∃estáproxima.Desembocadura;Estero v (≥ 1 estáproxima.>);

• Rambla v ∃es originado.Torrente;Rambla v (≥ 1 es originado.>);

We recommend to remove the superfluous axiom.

C1 v ∃R.C2;C1 v (≥ 1 R.>);//////////////////// (4.4)

After applying the recommendation to the above examples, correction will be

becoming as follows:

• Estero v ∃estáproxima.Desembocadura;

• Rambla v ∃es originado.Torrente;

According to the recommendation above, Code 2 is a script of OPPL implemen-

tation for this antipattern.

?c1:CLASS, ?c2:CLASS,

?r:OBJECTPROPERTY

Select

?c1 subClassOf ?r some ?c2,

?c1 subClassOf ?r min 1 Thing

Where ?c1 != ?c2

begin

remove ?c1 subClassOf ?r min 1 Thing

end;

Code 2: SMALO OPPL Script

28 CHAPTER 4. OPPL-BASED ANTIPATTERNS

4.3 Guideline MinIsZero (MIZ)

C1 v (≥ 0R.>); (4.5)

The ontology developer wants to say that C1 can be the domain of the R

property. This restriction has no impact on the logical model being defined and

can be removed. This antipattern appeared once in the HydrOntology debugging

process.

• Laguna Salada v (≥ 0 es alimentada.>);

Hence, we propose to remove the axiom.

C1 v (≥ 0R.>);/////////////////// (4.6)

According to the recommendation above, a script of OPPL implementation

for this antipattern will be like Code 3.

?c1:CLASS,

?r:OBJECTPROPERTY

Select

?c1 subClassOf ?r min 0 Thing

Where ?c1 != Thing

begin

remove ?c1 subClassOf ?r min 0 Thing

end;

Code 3: MIZ OPPL Script

4.4 Guideline DisjointnessofComplementonSubclass (DCS)

C1 v not C2; (4.7)

The ontology developer may want to say that C1 and C2 cannot share in-

stances, instead of defining C1 as subclass of the logical negation of C2. Conver-

sion the current axiom into a disjoint axiom is absolutely allowed since it does

not change the semantic. Hence it could be more appropriate to state that C1

and C2 are disjoint. The following are axioms discovered as this antipattern in

HydrOntology:

• Laguna Salada v not Aguas Dulces

4.4. GUIDELINE DISJOINTNESSOFCOMPLEMENTONSUBCLASS (DCS) 29

• Agua Marinas v not Aguas Dulces

• Albufera v not Aguas Dulces

We propose to change the axiom into a disjointness axiom because of the equiv-

alency.

C1v not/////// C2;⇒ Disj(C1, C2); (4.8)

The examples above after correction will changed to:

• Disj(Laguna Salada,Aguas Dulces);

• Disj(Agua Marinas,Aguas Dulces);

• Disj(Albufera,Aguas Dulces);

A OPPL script to implement this antipattern should be like code 4.

?c1:CLASS, ?c2:CLASS

SELECT

?c1 subClassOf not ?c2

WHERE ?c1 != ?c2

BEGIN

remove ?c1 subClassOf not ?c2,

add ?c1 disjointWith ?c2

END;

Code 4: DCS OPPL Script

Chapter 5

Lint-Based AntiPatterns

Lint-Based antiPatterns are a collection of antipatterns that could not be imple-

mented by OPPL. Since, we have Java implementation inside of Lint, Lint is more

powerful than OPPL. It can handle a complex antipattern that requires a spe-

cific query (detection) and action. Nevertheless, Lint is not easier to implement

compared to OPPL.

The idea of Lint comes from the implementation of the Lint-Jar in LintRoll

plug-in on Protégé. We simplify the use of the Lint-Jar and come up with an

implementation which covers every function needed to support an antipattern.

We also think about reusability. Probably, two antipatterns have the same action

part. Thus, one implementation could be used for two antipatterns.

Some antipatterns may contain a disjoint axiom. Lint is able to detect either

direct or indirect disjointness between two classes. Furthermore, Lint also can

detect disjointness over two unions as long as all components in each union are a

class. The Figure 5.1 illustrates the disjointness over two unions. C1 and C2 are

not necessarily disjoint, neither are C3, C4 and C5.

If we find an axiom Disj(C1, C2), notice that this does not mean that the

ontology developer has explicitly expressed that C1 and C1 are disjoint, but that

these two concepts are determined as disjoint from each other by a reasoner

Figure 5.1: Indirect Disjointness over two unions

31

32 CHAPTER 5. LINT-BASED ANTIPATTERNS

(Facts++, Pellet, etc). We use this notation as a shorthand for C1 u C2 v ⊥
In order to present how Lint implements an antipattern, we provide a pseu-

docode [6] for helping us to understand how an antipattern is implemented.

Pseudocode is an artificial and informal language that helps programmers de-

velop algorithms. Pseudocode is a ”text-based” detail (algorithmic) design tool.

Each antipattern consists of two parts, namely detection and action. Detection

and action have their own pseudocode. Since an antipattern may have several

detection pattern and different actions, the pseudocode for the antipattern could

be more than two. A detection process will return pairs of lists of axioms and

lists of parameters for action process, while an action process will return lists of

actions where the user will choose the most appropriate one.

5.1 Detectable Logical AntiPatterns (DLAP)

5.1.1 AntiPattern AndIsOr (AIO)

C1 v ∃R.(C21 u ... u C2n);Disj(C2i, C2j); (5.1)

C1 v (C21 u ... u C2n);Disj(C2i, C2j); (5.2)

This is a common modeling error that appears due to the fact that in com-

mon linguistic usage, ”and” and ”or” do not correspond consistently to logical

conjunction and disjunction respectively [18]. For example, ”I like cake with milk

and chocolate” is ambiguous. Does the cake contain?

• Some chocolate plus some milk? Cake v ∃contain.Chocolateu∃contain.Milk

• Chocolate-flavoured milk? Cake v ∃contain.(Chocolate uMilk)

• Some chocolate or some milk? Cake v ∃contain.(Chocolate tMilk)

Notice that the second version of the AIO antipattern 5.1 is contained in the

first one with an anonymous class. In the original version of HydrOntology this

antipattern appeared twice. The following is one instance of this antipattern :∗

• Caño v ∃comunica.(Albufera uMar uMarisma);

In order to solve this antipattern we propose replacing the logical conjunction by

the logical disjunction, or by the conjunction of two existential restrictions.

C1 v ∃R.(C21 u ... u C2n);////////////////////////////////

Disj(C2i, C2j);

}
⇒ C1 v ∃R.(C21 t ... t C2n); (5.3)

⇒ C1 v (∃R.C21) u ... u (∃R.C2n); (5.4)
∗For better readability, we do not specify in these examples that the used classes are disjoint

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 33

C1 v C21 u ... u C2n;/////////////////////////Disj(C2i, C2j); ⇒ C1 v C21 t ... t C2n; (5.5)

After applying all recommendations above, we have possible corrections for

the example of this antipattern as follows:

• Recommendation 5.3:

Caño v ∃comunica.(Albufera tMar tMarisma);

• Recommendation 5.4:

Caño v (∃comunica.Albufera)u(∃comunica.Mar)u(∃comunica.Marisma)

We provide several pseudocodes below that illustrate the detection (Code 5

and Code 6) and action process (Code 7, Code 8 and Code 9) to show how to

implement this antipattern.

Code 5 Pseudocode for AIO (5.1)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom in subClassAxioms

let (subClass v superClass) = axiom ∗

if superClass is ∃ restriction

let ∃R.intersection = superClass

if ∃Ci, Cj in operands of intersection where Disj(Ci, Cj)

disjointAxioms := get all axioms performing

the disjointness of Ci and Cj

add ([axiom] + disjointAxioms, [subClass,R, operands, axiom])

into results †

return results

∗We use notation ’let ... = ...’ [21] as a pattern matching of both side of ’=’. Example
: ’let (a v b) = (Caño v ∃comunica.(Albufera uMar uMarisma))’ yields a := Caño and
b := ∃comunica.(Albufera uMar uMarisma)

†Notation [x]+[y] defines a concatenation between two lists or arrays and the result is [x, y].
Meanwhile, notation ’add x into L’ defines that the element x is appended into the list or array
L.

34 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 6 Pseudocode for AIO (5.2)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axioms in the ontology

for each axiom in subClassAxioms

let (subClass v superClass) = axiom

if superClass is an intersection

if ∃Ci, Cj in operands of intersection where Disj(Ci, Cj)

disjointAxioms := get all axioms performing

the disjointness of Ci and Cj

add ([axiom] + disjointAxioms, [subClass, operands, axiom])

into results

return results

Code 7 Pseudocode for AIO (5.3)

Load var [subClass,R, operands, axiom] from detection process

removedAction := create an action to remove axiom

newAxiom := subClass v ∃R.UnionOf(operands)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

Code 8 Pseudocode for AIO (5.4)

Load var [subClass,R, operands, axiom] from detection process

removedAction := create an action to remove axiom

addedActionList is a list

for each operand in operands

newAxiom := subClass v ∃R.operand

addedAction := create an action to add newAxiom

add addedAction into addedActionList

return [removedAction]+addedActionList

Code 9 Pseudocode for AIO (5.5)

Load var [subClass, operands, axiom] from detection process

removedAction := create an action to remove axiom

newAxiom := subClass v UnionOf(operands)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 35

5.1.2 AntiPattern OnlynessIsLoneliness (OIL)

C1 v ∀R.C2;C1 v ∀R.C3;Disj(C2, C3); (5.6)

It is necessary to be detectable, property R must have at least a value, nor-

mally specified as existential restrictions, (minimum) or exact cardinality restric-

tion for that class with a positive number on the cardinality.

The ontology developer created a universal restriction to say that C1 instances

can only be linked with property R to C2 instances. Next, a new universal restric-

tion is added saying that C1 instances can only be linked with R to C3 instances,

with C2 and C3 disjoint. In general, this is because the ontology developer forgot

the previous axiom in the same class or in any of the parent classes. The following

is one of the two examples of this antipattern in HydrOntology:†

• Aguas de Transición v ∀está próxima.Aguas Marinas;

Aguas de Transición v ∀está próxima.Desembocadura;

If it makes sense, we propose to the ontology developer to transform the two

universal restrictions into only one that refers to the logical disjunction of C2 and

C3.

C1 v ∀R.C2;C1 v ∀R.C3;///////////////////////////////Disj(C2, C3); ⇒ C1 v ∀R.(C2 t C3); (5.7)

According to the recommendation and to apply it on the example, we will get

new axiom :

• Aguas de Transición v ∀está próxima.(Aguas Marinas u
Desembocadura);

In order to show how to implement this antipattern, we provide a pseudocode

of detection (Code 10) and action process (Code 11) below.

†In the example, for readability reason, we do not show a related axiom with property R
must have at least a value and disjointness.

36 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 10 Pseudocode for OIL (5.6)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not ∀ restriction

continue to the next loop

let ∀R.C2 = superClass

if neither C2 is a class nor UnionOf

continue to the next loop

subClassAxioms2 := get all subClassAxiom whose the subClass is C1

for each axiom2 in subClassAxioms2

let (C1 v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop ∗

let ∀R.C3 = superClass

if C3 == C2 or neither C3 is a class nor UnionOf †

continue to the next loop

if not Disj(C2, C3)

continue to the next loop

if C1 or its ancestor have ∃R.C or = mR.C or ≥ nR.C where m,n > 0

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

SomeExactMinAxioms :=get all axioms performing

the clause on ’if statement’ above

axiomList :=[axiom1, axiom2]+

disjointAxioms + SomeExactMinAxioms

paramList := [axiom1, axiom2, C1, R, C2, C3]

add pair (axiomList, paramList) into results

return results

∗It means that the execution will continue to the next loop on the current loop
†C3 == C2 represents that C3 and C2 are the same symbol (class, anonymous class, property,

etc), and it does not represent that C3 and C2 are semantically equivalent. C3 is a class meaning
that C3 is a proper class and not anonymous.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 37

Code 11 Pseudocode for OIL (5.7)

Load var [axiom1, axiom2, C1, R, C2, C3] from detection process

removedAction1 := create an action to remove axiom1

removedAction2 := create an action to remove axiom2

newAxiom := C1 v ∀R.(C2 t C3)

addedAction := create an action to add newAxiom

return [removedAction1,removedAction2, addedAction]

5.1.3 AntiPattern OnlynessIsLonelinessWithInheritance (OILWI)

C1 v+ C2;C1 v ∀R.C3;C2 v ∀R.C4;Disj(C3, C4); (5.8)

Like the antipattern OIL, it is necessary to be detectable, property R must

have at least a value, normally specified as existential restrictions, (minimum) or

exact cardinality restriction for that class with a positive number on the cardi-

nality.

The ontology developer has added a universal restriction for class C1 without

remembering that he had already defined another universal restriction with the

same property in a parent class. This incoherence comes from the fact that the

subclass inherits from its parent all its constraints. This antipattern is a spe-

cialization of OIL. This antipattern appeared twice in HydrOntology debugging

process.

• Ibon v Charca; Ibon v ∀es originado.(Glaciar tMasa de Hielo);

Charca v ∀es originado.(Arroyo tManantial tRio);

• Albufera v Laguna;Laguna v Aguas Quietas Naturales;

Albufera v ∀es alimentada.Aguas Marinas;

Aguas Quietas Naturales v ∀es alimentada.Aguas Corrientes Naturales;

To solve this antipattern, the ontology developer should follow the OIL rec-

ommendation apply on the parent class C2. Because a child class inherit all the

axioms of its parent, all the axioms of the parents should apply on the child too.

C1 v+ C2;C1 v ∀R.C3;

C2 v ∀R.C4;///////////////Disj(C3, C4);

}
⇒ C2 v ∀R.(C3 t C4); (5.9)

From the examples of this antipattern, the recommendation 5.9 yields the

following axioms:

38 CHAPTER 5. LINT-BASED ANTIPATTERNS

• Ibon v Charca; Ibon v ∀es originado.(Glaciar tMasa de Hielo);

Charca v ∀es originado.(GlaciartMasa de HielotArroyotManantialt
Rio);

• Albufera v Laguna;Laguna v Aguas Quietas Naturales;

Albufera v ∀es alimentada.Aguas Marinas;

Aguas Quietas Naturales v ∀es alimentada.(Aguas Marinas t
Aguas Corrientes Naturales);

The code 12 is a pseudocode for detection process of this antipattern, and the

code 13 is a pseudocode for the action one.

Code 12 Pseudocode for OILWI (5.8)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not ∀ restriction

continue to the next loop

let ∀R.C3 = superClass

if neither C3 is a class nor UnionOf

continue to the next loop

for each axiom2 in subClassAxioms, but different with axiom1

let (C2 v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop

let ∀R.C4 = superClass

if C1 == C2 and neither C4 is a class nor UnionOf

continue to the next loop

if not Disj(C3, C4)

continue to the next loop

if C1 v+ C2 is not hold

continue to the next loop

if C1 or its ancestor have ∃R.C or = mR.C or ≥ nR.C where m,n > 0

SomeExactMinAxioms :=get all axioms performing

the clause on ’if statement’ above

disjointAxioms := get all axioms performing

the disjointness of C3 and C4

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 39

...

AncestorAxioms := get all axioms performing C1 v+ C2

axiomList :=AncestorAxioms + [axiom1, axiom2] + disjointAxioms+

SomeExactMinAxioms

paramList := [C2, C3, C4, R, axiom2]

add pair (axiomList, paramList) into results

return results

Code 13 Pseudocode for OILWI (5.9)

Load var [C2, C3, C4, R, axiom2] from detection process

removedAction := create an action to remove axiom2

newAxiom := C2 v ∀R.C3 t C4

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.1.4 AntiPattern UniversalExistence (UE)

C1 v ∃R.C2;C1 v ∀R.C3;Disj(C2, C3); (5.10)

The ontology developer adds an existential/universal restriction to a class

whilst there was already an inconsistency-leading universal/existential restriction

in the same class or in a parent class, respectively. The following is one of three

examples of this antipattern in HydrOntology:

• Gola v Canal Aguas Marinas;Gola v ∃comunica.Ria;

Canal Aguas Marinas v ∀comunica.Aguas Marinas;

These antipatterns are difficult to debug because ontology developers some-

times do not distinguish clearly between existential and universal restrictions.

Our proposal is aimed at resolving the unsatisfiability of a class, but as usual it

should be clearly analyzed by the ontology developer.

C1 v ∃R.C2;C1 v ∀R.C3;///////////////Disj(C2, C3); ⇒ C1 v ∀R.(C2 t C3); (5.11)

Thanks to this recommendation, the correction of the example would be:

40 CHAPTER 5. LINT-BASED ANTIPATTERNS

• Gola v ∃comunica.Ria;Gola v ∀comunica.(Aguas Marinas tRia);

We provide several pseudocodes below that illustrate the detection (Code 14)

and action process (Code 15) to show how to implement this antipattern.

Code 14 Pseudocode for UE (5.10)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not ∃ restriction

continue to the next loop

let ∀R.C2 = superClass

if neither C2 is a class nor UnionOf

continue to the next loop

subClassAxioms2 := get all subClassAxiom whose the subClass is C1

for each axiom2 in subClassAxioms2

let (C1 v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop

let ∀R.C3 = superClass

if C3 == C2 or neither C3 is a class nor UnionOf †

continue to the next loop

if Disj(C2, C3)

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

axiomList := [axiom1, axiom2] + disjointAxioms

paramList := [C1, C2, C3, R, axiom2]

add pair (axiomList, paramList) into results

return results

Code 15 Pseudocode for UE (5.11)

Load var [C1, C2, C3, R, axiom2] from detection process

removedAction := create an action to remove axiom2

newAxiom := C2 v ∀R.(C2 t C3)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 41

5.1.5 AntiPattern UniversalExistenceWithInheritance (UEWI)

C1 v+ C2;C1 v ∃R.C3; C2 v ∀R.C4;Disj(C3, C4);

C1 v+ C2;C1 v ∀R.C3; C2 v ∃R.C4;Disj(C3, C4); (5.12)

The ontology developer has added an axiom in a subclass without remem-

bering that he has already defined the parent class with the R property. This

incoherence comes from the fact that subclass inherits from its parent all its

constraints. This AntiPattern is a specialization of UE.

This antipattern appeared three times in HydrOntology debugging process.

• Gola v Canal Aguas Marinas;

Gola v ∃comunica.Ría;

Canal Aguas Marinas v ∀comunica.Aguas Marinas;

• Laguna Salada v Laguna;

Laguna v Aguas Quietas Naturales;

Laguna Salada v ∃es alimentada.Aguas Marinas;

Aguas Quietas Naturales v ∀es alimentada.Aguas Corrientes Naturales;

• Ibón v Charca

Ibón v ∀es originado.(Glaciar tMasa de Hielo);

Charca v ∃es originado.(Arroyo tManantial tRío);

These two antipatterns are very difficult to debug and depend of the ontology

developer point of view. We propose a logical correction of these two antipatterns

in order to obtain a coherent taxonomy. But you need to discuss with the ontology

developer to be sure that this is what he wants to say. Maybe a more simple

solution is possible depending of the relation between C3 and C4.

C1 v+ C2;C1 v ∃R.C3;

C2 v ∀R.C4;///////////////Disj(C3, C4);

}
⇒ C2 v ∀R.(C3 t C4);

C1 v+ C2;C1 v ∀R.C3;

C2 v ∃R.C4;///////////////Disj(C3, C4);

}
⇒ C2 v ∃R.(C3 t C4); (5.13)

Thanks for this recommendation, the correction of examples would be:

• Gola v Canal Aguas Marinas;

Gola v ∃comunica.Ría;

Canal Aguas Marinas v ∀comunica.(Ría tAguas Marinas);

42 CHAPTER 5. LINT-BASED ANTIPATTERNS

• Laguna Salada v Laguna;

Laguna v Aguas Quietas Naturales;

Laguna Salada v ∃es alimentada.Aguas Marinas;

Aguas Quietas Naturales v ∀es alimentada.(Aguas Marinas t
Aguas Corrientes Naturales);

• Ibón v Charca

Ibón v ∀es originado.(Glaciar tMasa de Hielo);

Charca v ∃es originado.(GlaciartMasa de HielotArroyotManantialt
Río);

We show only a pseudocode of the first type of detection. The second type is

simmetric with the first one by exchanging ∃ and ∀ on the detection and action

process. The detection process of this antipattern has the pseudocode Code 16.

The first type of this antipattern has similar pseudocode with OILWI (see 5.9).

Code 16 Pseudocode for UEWI (5.12)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not ∃ restriction

continue to the next loop

let ∃R.C3 = superClass

if neither C3 is a class nor UnionOf

continue to the next loop

for each axiom2 in subClassAxioms, but differentWith axiom1

let (C2 v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop

let ∀R.C4 = superClass

if C1 == C2 and neither C4 is a class nor UnionOf

continue to the next loop

if not Disj(C3, C4)

continue to the next loop

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 43

...

if C1 v+ C2 holds

disjointAxioms := get all axioms performing

the disjointness of C3 and C4

AncestorAxioms := get all axioms performing C1 v+ C2

axiomList := AncestorAxioms + [axiom1, axiom2] + disjointAxioms

paramList := [C2, C3, C4, R, axiom2]

add pair (axiomList, paramList) into results

return results

5.1.6 AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)

R1 v R2
‡;C1 v ∃R1.C2;C1 v ∀R2.C3;Disj(C2, C3);

R1 v R2;C1 v ∀R1.C2;C1 v ∃R2.C3;Disj(C2, C3); (5.14)

The ontology developer misunderstands the sub-property relation between

properties, thinking that it is similar to a part-of relation. This antipattern is a

specialization of UE because C1 v ∃R1.C2;R1 v R2 |= C1 v ∃R2.C2.

This antipattern appeared 1 time in HydrOntology debugging process.

• se extrae v es alimentada;

Fuente Artificiale v ∃se extrae.Acuífero;

Fuente Artificiale v ∀es alimentada.Tubería;

Like for UE there may exist several recommendations for this antipattern. In

our experiment, we first propose to the ontology developer the UE recommen-

dation (see equation 5.15). But the ontology developer does not validate this

solution. After some discussion ans studies, we have realized that he misunder-

stood the subclass-of relation between property. Thus, the solution was to remove

the sub property relation between R1 and R2.

R1 v R2; C1 v ∃R1.C2;

C1 v ∀R2.C3;//////////////// Disj(C2, C3);

}
⇒ C1 v ∀R2.(C2 t C3);

R1 v R2; C1 v ∀R1.C2;

C1 v ∃R2.C3;//////////////// Disj(C2, C3);

}
⇒ C1 v ∃R2.(C2 t C3); (5.15)

‡R1 is a sub property of R2 or we use an axiom R1subPropertOfR2 in Protégé.

44 CHAPTER 5. LINT-BASED ANTIPATTERNS

R1 v R2//////////;C1 v ∃R1.C2;C1 v ∀R2.C3;Disj(C2, C3);

R1 v R2//////////;C1 v ∀R1.C2;C1 v ∃R2.C3;Disj(C2, C3); (5.16)

Because of the second recommendation, we remove sub property axiom on the

examples. The correction of examples after applying the first recommendation

would be:

• se extrae v es alimentada;

Fuente Artificiale v ∃se extrae.Acuífero;

Fuente Artificiale v ∀es alimentada.(Acuífero t Tubería);

An implementation of this antipattern is more complex than antipattern

UEWI since it involves a sub property axiom. We provide an example imple-

mentation for the first type of this antipattern (Code 17, Code 18 and Code 19)

. The second type is symmetric of the first one by exchanging ∃ and ∀.

Code 17 Pseudocode for UEWPI (5.14)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not ∃ restriction

continue to the next loop

let ∃R1.C2 = superClass

if neither C2 is a class nor UnionOf

continue to the next loop

superPropertiesR1 := get all super properties of R1

if |superPropertiesR1| == 0 ∗

continue to the next loop

subClassAxioms2 := get all subClassAxiom whose the subClass is C1

...(continue to the next page)

∗|L| means size of list or set L.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 45

for each axiom2 in subClassAxioms2

let (C1 v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop

let ∀R2.C3 = superClass

if R2 /∈ superPropertiesR1

continue to the next loop

if C3 == C2 or neither C3 is a class nor UnionOf

continue to the next loop

if Disj(C2, C3)

subPropertyAxiom := get the axiom performing R1 v R2

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

axiomList := [axiom1, axiom2, subPropertyAxiom] + disjointAxioms

paramList := [C1, C2, C3, R2, axiom2, subPropertyAxiom]

add pair (axiomList, paramList) into results

return results

Code 18 Pseudocode for UEWPI (5.15)

Load var [C1, C2, C3, R2, axiom2, subPropertyAxiom] from detection process

removedAction := create an action to remove axiom2

newAxiom := C2 v ∀R2.(C2 t C3)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

Code 19 Pseudocode for UEWPI (5.16)

Load var [C1, C2, C3, R2, axiom2, subPropertyAxiom] from detection process

removedAction := create an action to remove subPropertyAxiom

return [removedAction]

5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)

C2 v ∃R−.C1a
§;C1b v ∀R.C3;Disj(C2, C3);C1a v∗ C1b;

C2 v ∀R−.C1a;C1b v ∃R.C3;Disj(C2, C3);C1a v∗ C1b; (5.17)

46 CHAPTER 5. LINT-BASED ANTIPATTERNS

The ontology developer added restrictions about C2, C1a and C1b
¶ using a

property and its inverse. This antipattern is a specialization of UEWI and SOS

because:

• C2 v ∃R−.C1a; |= C1.1 v ∃R.C2;C1.1 v C1a; which is a UEWI antipattern.

See equation 5.12.

• C2 v ∀R−.C1a; imply that it may exist a class C1.1 v C1a; that can be

defined as C1.1 v ∃R.C2; which is a specialization of SOS antipattern. See

equation 5.40.

This antipattern appeared twice in HydrOntology debugging process.

• Mar v ∃alimenta.Albufera;

Albufera v Laguna;

Laguna v Aguas Quietas Naturales;

alimenta ≡ es alimentada−; ‖

Aguas Quietas Naturales v ∀es alimentada.Aguas Corrientes Naturales

• Río v ∀esoriginado.Nacimiento;

Nacimiento vManantial;

esoriginado ≡ origina−;

Manantial v ∃origina.Chortal

We propose to add the reverse axiom of the C2 definition and follow the

recommendations of SOS and UE.

C2 v ∃R−.C1a;C1b v ∀R.C3;////////////////

Disj(C2, C3);C1a v∗ C1b;

}
⇒ C1b v ∀R.(C2 t C3);

C2 v ∀R−.C1a;C1b v ∃R.C3;////////////////

Disj(C2, C3);C1a v∗ C1b;

}
⇒ C1b v ∃R.(C2 t C3); (5.18)

Because of this recommendation, the correction of examples would be:

• Mar v ∃alimenta.Albufera;

Albufera v Laguna;

Laguna v Aguas Quietas Naturales;

alimenta ≡ es alimentada−; ∗∗

§R− is an inverse property of R or we use an axiom R−inverseOfR in Protégé.
¶C1a and C1b could be the same class, or they have subset relations.
‖On the Protégé, you may find it as alimenta inverseOf es alimentada or

es alimentada inverseOf alimenta.
∗∗On the Protégé, you may find it as alimenta inverseOf es alimentada or

es alimentada inverseOf alimenta.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 47

Aguas Quietas Naturales v ∀es alimentada.(Mar

tAguas Corrientes Naturales)

• Río v ∀esoriginado.Nacimiento;

Nacimiento vManantial;

esoriginado ≡ origina−;

Manantial v ∃origina.(Río t Chortal)

This antipattern is more complex than UEWPI. Instead of subPropertyOf

axiom, we have an inverseOf axiom and we take into account all subClass re-

lations involved in this antipattern. We provide an example implementation for

the first type of this antipattern (Code 20 and Code 21) . The second type is

symmetric to the first one by exchanging ∃ and ∀.

Code 20 Pseudocode for UEWIP (5.17)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C2 v superClass) = axiom

if superClass is not ∃ restriction

continue to the next loop

let ∃R−.C1a = superClass

if C1a is not a class

continue to the next loop

inversePropertiesR := get all inverse properties of R−

if |inversePropertiesR| == 0

continue to the next loop

ancestorClassesC1a := get all ancestor classes of C1a

for each axiom2 in subClassAxioms

let (C1b v superClass) = axiom2

if superClass is not ∀ restriction

continue to the next loop

...(continue to the next page)

48 CHAPTER 5. LINT-BASED ANTIPATTERNS

...

let ∀R.C3 = superClass

if R /∈ inversePropertiesR

continue to the next loop

if C1a 6= C1b and C1b /∈ ancestorClassesC1a

continue to the next loop

if C3 == C2 or neither C3 is a class nor UnionOf

continue to the next loop

if Disj(C2, C3)

inversePropertyAxiom := get the axiom performing R−inverseOfR

ancestorAxioms := get the axiom performing C1a v∗ C1b

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

axiomList :=[axiom1] + ancestorAxioms+

[inversePropertyAxiom, axiom2] + disjointAxioms

paramList := [C1b, C2, C3, R, axiom2]

add pair (axiomList, paramList) into results

return results

Code 21 Pseudocode for UEWIP (5.18)

Load var [C1b, C2, C3, R, axiom2] from detection process

removedAction := create an action to remove axiom2

newAxiom := C2 v ∀R.(C2 t C3)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.1.8 AntiPatterns hasValueisOneValue (VOV)

C3 v∗ C1; C3 v∗ C2;

C1 v hasV alue R.{v1}; C2 v hasV alue R.{v2};
v1 6= v2; R is functional; (5.19)

The hasV alue constraint is a built-in OWL property that links a restriction

class to a value v1, which can be either an individual or a data value. A restriction

containing a hasV alue constraint describes a class of all individuals for which the

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 49

property concerned has at least one value semantically equal to v1 (it may have

other values as well like v2)[2].

OWL functional properties indicate how many times a property can be used

for a given individual. The R property is functional means that each individual

of the class C3 has at most one value by the property R. For example, the

hasBirthday relation between a person and his or her birthday is functional.

Everyone has just one birthday [2].

Thus the ontology developer adds a hasV alue restriction to a class using a

functional property without remembering that there was already an hasV alue

restriction in the same class or in a parent class, respectively. The following are

two examples of this antipattern in the SweetNumeric ontology:

• Continental Margin v∗ GeometricalObject 2D;

Continental Margin v∗ GeometricalObject 3D;

GeometricalObject 2D v hasV alue hasDimension.{2};
GeometricalObject 3D v hasV alue hasDimension.{3};
hasDimension is functional;

• Aulacogen v∗ GeometricalObject 2D;

Aulacogen v∗ GeometricalObject 3D;

GeometricalObject 2D v hasV alue hasDimension.{2};
GeometricalObject 3D v hasV alue hasDimension.{3};
hasDimension is functional;

The proposal for avoiding this antipattern is to remove the functional property

of R.

C3 v∗ C1; C3 v∗ C2;

C1 v hasV alue R.{v1}; C2 v hasV alue R.{v2};
v1 6= v2; R is functional;//////////////////// (5.20)

Applying this recommendation into the example, we just need to remove the

axiom hasDimension is functional;.

An implementation of this antipattern is presented by Code 22 and Code 23.

One special thing occurs in the Code 22 where a functional property can generate

more than one pattern. Examples above show this event. Removing functionality

of the property on a pattern will solve all inconsistencies on this antipattern with

this property.

50 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 22 Pseudocode for VOV (5.19)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom

if superClass is not hasV alue restriction

continue to the next loop

let hasV alueR.v1 = superClass

if R is not functional data property

continue to the next loop

for each axiom2 in subClassAxioms

let (C2 v superClass) = axiom2

if superClass is not hasV alue restriction

continue to the next loop

let hasV alueR2.v2 = superClass

if R 6= R2 or v1 == v2
continue to the next loop

isConnected := false, defines whether C1 and C2 are connected

by chains of v or ≡
axiomPath := []∗, is a list of axiom that connects C1 and C2

intersectionDescendants = [], is a set of intersection descendant

between C1 and C2

if C1 == C2

isConnected := true

else if C1 v+ C2 or C2 v+ C1 holds

isConnected := true

axiomPath := get the axiom performing C1 v+ C2 or C2 v+ C1

else

clsDescs1 := get all descendent classes of C1

clsDescs2 := get all descendent classes of C2

intersectionDescendants := intersection of clsDescs1 and clsDescs2

isConnected := (|intersectionDescendants| > 0)

if isConnected

functionalAxiom := get the functional data property axiom of R

if |intersectionDescendants| == 0

axiomList := [functionalAxiom, axiom1, axiom2] + axiomPath

paramList := [functionalAxiom]

add pair (axiomList, paramList) into results

else

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 51

...

for each class cls in intersectionDescendants

if super class of cls also in intersectionDescendants

continue to the next loop

axiomPath := get the axiom performing cls v+ C1 and cls v+ C2

axiomList := [functionalAxiom, axiom1, axiom2] + axiomPath

paramList := [functionalAxiom]

add pair (axiomList, paramList) into results

return results

Code 23 Pseudocode for VOV (5.20)

Load var [functionalAxiom] from detection process

removedAction := create an action to remove functionalAxiom

return [removedAction]

5.1.9 AntiPattern EquivalenceIsDifference (EID)

C1 ≡ C2;Disj(C1, C2); (5.21)

This pattern, which is only common for ontology developers with no previous

training in OWL modeling, comes from the fact that the ontology developer

means that C1 is a subclass of C2, or vice versa, but at the same time it is

different from C2 since he has more information. After a short training session

the developer would discover that he really wants to express C1 v C2. The

followings are two of six of this antipattern in HydrOntology:

• Cascada ≡ Catarata;Disj(Cascada,Catarata);

• Raudal ≡ Rápido;Disj(Raudal, Rápido);

We propose to ask the ontology developer whether he really wants to define a

synonym or a subclass-of relation. Depending on the ontology developer’s answer,

the equivalent axiom should be transformed into a subclass-of one or the less used

concept should be suppressed according to the SOE recommendations. In order

∗[] is the empty list.

52 CHAPTER 5. LINT-BASED ANTIPATTERNS

to count less used concept, we use term frequency of a class that is calculated

according to the appearance of the class in the all axioms in the ontology.

C1 ≡ C2;Disj(C1, C2);//////////////////////////// ⇒ C1 v C2; (5.22)

⇒ C2 label ofC1; (5.23)

For the first example above, Cascada and Catarata respectively have term

frequency 32 and 26. Some possibilities of condition after applying recommenda-

tions would be:

• Cascada ≡ Catarata;

• Cascada v Catarata;

• Catarata v Cascada;

• Cascada has some additional labels from Catarata as follows:

- [Comment] : Cascada o salto grande de agua

- [Source] : Diccionario de la Real Academio de Española

An implementation of the detection process is the Code 24. those recommen-

dations, as we have shown in the correction of examples above, yield some action

processes on the Code

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 53

Code 24 Pseudocode for EID (5.21)

results is a list of pair (list of axiom, list of parameter for action process)

equivalentAxioms is a set of equivalent axiom in the ontology

for each axiom in equivalentAxioms

let (C1 ≡ C2) = axiom

if C2 is not a class

continue to the next loop

if Disj(C1, C2)

disjointAxioms := get all axioms performing the disjointness of C1 and C2

freq1 := count the frequency of concept C1 used

freq2 := count the frequency of concept C2 used

annotationAxiom1 := create annotation axiom on C1

with comment Termfrequency : [freq1]

annotationAxiom2 := create annotation axiom on C2

with comment Termfrequency : [freq2]

axiomList :=[axiom, annotationAxiom1, annotationAxiom2]

+disjointAxioms

disjointAxiom := a disjoint axiom from disjointAxioms ††

paramList := [C1, C2, axiom, disjointAxiom, freq1, freq2]

add pair (axiomList, paramList) into results

return results

Code 25 Pseudocode for EID (5.22)

Load var [C1, C2, axiom, disjointAxiom, freq1, freq2] from detection process

removedAction := create an action to remove disjointAxiom

return [removedAction]

Code 26 Pseudocode for EID (5.22)

Load var [C1, C2, axiom, disjointAxiom, freq1, freq2] from detection process

removedAction1 := create an action to remove axiom

removedAction2 := create an action to remove disjointAxiom

newAxiom := C1 v C2

addedAction := create an action to add newAxiom

return [removedAction1,removedAction2, addedAction]

††There is exactly one disjoint axiom in list of axiom disjointAxioms.

54 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 27 Pseudocode for EID (5.23)

Load var [C1, C2, axiom, disjointAxiom, freq1, freq2] from detection process

actionList := listofaction

if freq1 6= freq2

removedAction := create an action to remove axiom

add removedAction into actionList

removedAction := create an action to remove disjointAxiom

add removedAction into actionList

if freq1 > freq2

removedAction := create an action to remove class C2

add removedAction into actionList

annotationAxioms := get all annotation axiom of class C2

for each annAxiom in annotationAxioms

addedAction := create an action to add the annotation axiom annAxiom

into C1

add addedAction into actionList

else

removedAction := create an action to remove class C1

add removedAction into actionList

annotationAxioms := get all annotation axiom of class C1

for each annAxiom in annotationAxioms

addedAction := create an action to add the annotation axiom annAxiom

into C2

add addedAction into actionList

return actionList

5.1.10 AntiPattern EquivalencesAreDifferences (EAD)

C1 ≡ C3;C2 ≡ C3;Disj(C1, C2); (5.24)

The ontology developer has added a disjointness without remembering that he

has already defined both classes having synonym to another same class that could

be an anonymous class. This antipattern appeared 3 times in Tambis debugging

process.

• metal ≡ chemical u (∃atomic-number.integer) u (= 1atomic-number.>));

nonmetal ≡ chemicalu(∃atomic-number.integer)u(= 1atomic-number.>));

• metal ≡ chemical u (∃atomic-number.integer) u (= 1atomic-number.>));

metalloid ≡ chemicalu(∃atomic-number.integer)u(= 1atomic-number.>));

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 55

• metalloid ≡ chemicalu(∃atomic-number.integer)u(= 1atomic-number.>));

nonmetal ≡ chemicalu(∃atomic-number.integer)u(= 1atomic-number.>));

We propose to ask the ontology developer whether he really wants to define a

synonym or change definition of synonym for C1 or C2. It depends on the ontology

developer’s answer, if he prefers to define synonyms like current conditions, we

simply recommend to remove the disjoint axiom.

C1 ≡ C3;C2 ≡ C3;Disj(C1, C2)////////////////; (5.25)

You will find an implementation of this antipattern on the Code 28 and Code

29.

Code 28 Pseudocode for EAD (5.24)

results is a list of pair (list of axiom, list of parameter for action process)

equivalentAxioms is a set of equivalent axiom in the ontology

for each axiom1 in equivalentAxioms

let (C1 ≡ C3) = axiom1

equivalentAxioms2 := get all equivalent axiom whose the second operand of

≡ is C3

for each axiom2 in subClassAxioms2

let (C2 ≡ C3) = axiom2

if Disj(C1, C2)

disjointAxioms := get all axioms performing

the disjointness of C1 and C2

axiomList := [axiom1, axiom2] + disjointAxioms

disjointAxiom := adisjointaxiomfromdisjointAxioms

paramList := [disjointAxiom]

add pair (axiomList, paramList) into results

return results

Code 29 Pseudocode for EAD (5.25)

Load var [disjointAxiom] from detection process

removedAction := create an action to remove disjointAxiom

return [removedAction]

5.1.11 AntiPattern SubclassIsDifference (SID)

C1 v C2;Disj(C1, C2); (5.26)

56 CHAPTER 5. LINT-BASED ANTIPATTERNS

This pattern comes from a misunderstanding of subclass-of relation. It is

very closed to the EID one. This pattern was found once in the ontology Ontolo-

gia Forestal.

• Especies Forestals v Recursos Forestal;

• Forest Species v Forest Ressources;

We propose to confirm whether the ontology developer really wants to define

a subclass-of relation. Depending on the ontology developer’s answer, the disjoint

axiom should be suppressed or to follow the EID recommendations.

C1 v C2;Disj(C1, C2);//////////////// (5.27)

An implementation of the detection process is the Code 30. The action process

follows the action process of antipattern EAD (see Code 29).

Code 30 Pseudocode for SID (5.26)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom in subClassAxioms

let (C1 v C2) = axiom

if Disj(C1, C2)

disjointAxioms := get all axioms performing

the disjointness of C1 and C2

axiomList := [axiom] + disjointAxioms

disjointAxiom := a disjoint axiom from disjointAxioms

paramList := [disjointAxiom]

add pair (axiomList, paramList) into results

return results

5.1.12 AntiPattern SubclassesAreDifferences (SAD)

C1 v C2;C1 v C3;Disj(C2, C3); (5.28)

The ontology developer has added a disjointness without remembering that

he has already defined a class be subclass of both classes which are disjoint. The

following is an example of this antipattern in HydOntology:

• Zona Húmeda v Humedal;

Zona Húmeda v Surgencia Natural;

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 57

This antipattern is almost similar to the antipattern SID, but it uses two

subclass-of relations. We propose to ask the ontology developer whether he really

wants to define a subclass-of relation. Depending on the ontology developer’s

answer, the disjoint axiom should be suppressed or the the EID recommendations

should be followed.

C1 v C2;C1 v C3;Disj(C2, C3)////////////////; (5.29)

An implementation of the detection process is the Code 31. Like antipattern

SID, the action process also follows the action process of antipattern EAD (see

Code 29).

Code 31 Pseudocode for SAD (5.28)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v C2) = axiom1

if neither C2 is a class nor UnionOf

continue to the next loop

subClassAxioms2 := get all subClassAxiom whose the subClass is C1

for each axiom2 in subClassAxioms2

let (C1 v C3) = axiom2

if C3 == C2 or neither C3 is a class nor UnionOf

continue to the next loop

if Disj(C2, C3)

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

axiomList := [axiom1, axiom2] + disjointAxioms

disjointAxiom := a disjoint axiom from disjointAxioms

paramList := [disjointAxiom]

add pair (axiomList, paramList) into results

return results

5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MMCaR)

C1 v≥ xR.C2;C3 v= yR.C2;with y < x; (5.30)

C1 v≤ xR.C2;C3 v= yR.C2;with x < y; (5.31)

C1 and C3 on both equations above must fulfill one of following conditions:

58 CHAPTER 5. LINT-BASED ANTIPATTERNS

• C1 and C3 are the same class

• C1 v+ C3

• C3 v+ C1

• C4 v+ C1 and C4 v+ C3

The ontology developer may miss that a cardinality restriction about C1, C2, C3

and the property R does exist. This antipattern does not appear in the debugged

ontologies, it was deduced from the use of existential restriction that implies a

minimal cardinality one. Thus it was derived from a more complicated one of

the ECR 5.44, which appear several times in Hydrontology. The following is an

example of this antipattern in ComputerScience:

• TeachingFaculty v≤ 3takesCourse.Thing;

LecturerTaking4Courses v= 4takesCourse.Thing;

LecturerTaking4Courses v Lecturer;

Lecturer v TeachingFaculty;

We propose to ask the ontology developer which cardinality restriction is the

good one and remove the other.

C1 v≥ xR.C2;C3 v= yR.C2;///////////////// (5.32)

C1 v≤ xR.C2;C3 v= yR.C2;///////////////// (5.33)

An implementation of the detection process is the Code 32. Any recommen-

dations will remove an axiom as returned on paramList := [axiom1, axiom2] in

that code. Thus, we reuse the same action processes on the Code

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 59

Code 32 Pseudocode for MMCaR (5.31)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom1

if superClass is not a ≤ restriction ∗

continue to the next loop

let ≤ xR.C2 = superClass

for each axiom2 in subClassAxioms, but different with axiom1

let (C3 v superClass) = axiom2

if superClass is not an = restriction

continue to the next loop

let = yR2.C2b = superClass

if C2b 6= C2 or R 6= R2

continue to the next loop

if x ≤ y

continue to the next loop

isConnected := false, defines whether C1 and C3 are connected

by chains of v or ≡
axiomPath := [], is a list of axiom that connects C1 and C3

intersectionDescendants := [], is a set of intersection descendent

between C1 and C3

if C1 == C3

isConnected := true

else if C1 v+ C3 or C3 v+ C1 holds

isConnected := true

axiomPath := get the axiom performing C1 v+ C3 or C3 v+ C1

else

clsDescs1 := get all descendent classes of C1

clsDescs3 := get all descendent classes of C3

intersectionDescendants := intersection of clsDescs1 and clsDescs3

isConnected := (|intersectionDescendants| > 0)

if isConnected

if |intersectionDescendants| == 0

axiomList := [axiom1, axiom2] + axiomPath

paramList := [axiom1, axiom2]

add pair (axiomList, paramList) into results

else

for each class cls in intersectionDescendants

if super class of cls also in intersectionDescendants

continue to the next loop

axiomPath := get the axiom performing

cls v+ C1 and cls v+ C3

axiomList := [axiom1, axiom2] + axiomPath

paramList := [axiom1, axiom2]

add pair (axiomList, paramList) into results

return results

60 CHAPTER 5. LINT-BASED ANTIPATTERNS

5.1.14 AntiPattern Existential&CardinalityRestrictionWithInverseProperty

(ECRWIP)

Basic formula for this antipattern as follow:

C1 v ∃R−.C2;C2 v= 1R.>;C2 v ∃R.C3;Disj(C1, C3); (5.34)

From the basic formula above, we have found several extended formulas for

this antipattern as follow:

• C1 v ∃R−.C2;C2a v= 1R.>;C2a v ∃R.C3;Disj(C1, C3);C2 v+ C2a;

• C1 v ∃R−.C2;C2a v= 1R.>;C2a v ∃S.C3;Disj(C1, C3);C2 v+ C2a;S v
R

This antipattern appeared three times in HydrOntology debugging process.

Following is an example of this antipattern.

• Tubería v ∃alimenta.Fuente Artificial;

es alimentada = alimenta−;

Fuente Artificial v= 1es alimentada.>;

se extrae v es alimentada;

Fuente Artificial v ∃se extrae.Acuífero;

Disj(Tubería, Acuífero);

This antipattern leads to the unsatisfiability of C2 on the equation 5.34

because C1 v ∃R−.C2;� C2 v ∃R.C1;. Thus we obtained a SOS antipattern and

a MMCar one that composed an ECR one. Therefore, you should follow the SOS

recommendation and after checking the cardinality restriction.

C1 v ∃R−.C2;C2 v= 1R.>;

C2 v ∃R.C3;///////////////Disj(C1, C3);

}
⇒ C2 v ∃R.(C1 t C3); (5.35)

The correction of the above example after recommendation, would be:

• Tubería v ∃alimenta.Fuente Artificial;

es alimentada = alimenta−;

Fuente Artificial v= 1es alimentada.>;

se extrae v es alimentada;

Fuente Artificial v ∃se extrae.(Tubería tAcuífero);

Disj(Tubería, Acuífero);

∗≤,≥,= restriction mean respectively a minimal, maximal and exact cardinality restriction.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 61

This antipattern is more complex than UEWIP. We have an exact cardinality

restriction and possibility that sub property relation may occur. We also take

into account all subClass relations involved in this antipattern. We provide an

example implementation of this antipattern (Code 33 and Code 34).

Code 33 Pseudocode for ECRWIP (5.34)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom1

if superClass is not ∃ restriction

continue to the next loop

let ∃R−.C2 = superClass

if C2 is not a class

continue to the next loop

inversePropertiesR := get all inverse properties of R−

if |inversePropertiesR| == 0)

continue to the next loop

ancestorClassesC2 := get all ancestor classes of C2

for each axiom2 in subClassAxioms

let (C2b v superClass) = axiom2

if superClass is not an exact cardinality restriction

continue to the next loop

let = nR.C = superClass

if n 6= 1

continue to the next loop

if C is not OWL Thing

continue to the next loop

if R /∈ inversePropertiesR

continue to the next loop

if C2b 6= C2 and C2b /∈ ancestorClassesC2

continue to the next loop

subPropertiesR :=get all sub property of R

add R into subPropertiesR

subClassAxioms2 := get all subClassAxiom whose the subClass is C2b

for each axiom3 in subClassAxioms

let (C2b v superClass) = axiom3

...(continue to the next page)

62 CHAPTER 5. LINT-BASED ANTIPATTERNS

...

if superClass is not ∃ restriction

continue to the next loop

let ∃S.C3 = superClass

if S /∈ subPropertiesR

continue to the next loop

if neither C3 is a class nor UnionOf

continue to the next loop

if Disj(C1, C3)

disjointAxioms := get all axioms performing

the disjointness of C1 and C3

inversePropertyAxiom := get the axiom performing

R−inverseOfR

ancestorAxioms := get the axiom performing C2 v∗ C2b

subPropertyAxiom := get the axiom performing

S subPropertyOf R if possible

axiomList :=[axiom1] + ancestorAxioms + [inversePropertyAxiom]+

[axiom2, subPropertyAxiom, axiom3] + disjointAxioms

paramList := [C1, C2b, C3, S, axiom3]

add pair (axiomList, paramList) into results

return results

Code 34 Pseudocode for ECRWIP (5.35)

Load var [C1, C2b, C3, S, axiom3] from detection process

removedAction := create an action to remove axiom3

newAxiom := C2b v ∃R.(C1 t C3)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER)

Basic formula for this antipattern as follow:

C1 v= 1R.>;C1 v ∃R.C2;C1 < ∃R.C3;Disj(C2, C3); (5.36)

The ontology developer has added restrictions about C1, C2 and C3 using a

property, exact restriction with cardinality one and a disjoint axiom. Obviously,

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 63

this antipattern is a specialization of SOS. The additional axiom C2 v= 1R.>;

causes C1 be unsatisfiable.

From the basic formula above, we have found several extended formulas for

this antipattern.

• C1 v= 1R.>;C1a v ∃R.C2;C1b v ∃R.C3;Disj(C2, C3);, where C1, C1a and

C1b must fulfill one of the following conditions:

– C1 v∗ C1a and C1 v∗ C1b

– C1a v∗ C1 and C1 v∗ C1b

– C1b v∗ C1 and C1 v∗ C1a

• C1 v= 1R.>;C1 v ∃R1.C2;C1 v ∃R2.C3;Disj(C2, C3);, where R1 v R

and R2 v R.

• Combination between subclass and sub property from previous points above.

This antipattern appeared twice in HydrOntology debugging process. Follow-

ing is an example of this antipattern.

• Arroyo v= 1es originado.>;

Aguas Corrientes Naturales v ∃es originado.Manantial;

Torrente v ∃es originado.(Glaciar tMasa de Hielo);

Torrente v Arroyo;

Arroyo v Aguas Corrientes Naturales;

Disj(Manantial, (Glaciar tMasa de Hielo));

, because Disj(Manantial,Glaciar) and Disj(Manantial,Masa de Hielo)

Since this antipattern is a special case of SOS antipattern, then we follow the

recommendations of SOS.

C1 v= 1R.>;C1 v ∃R.C2;

C1 v ∃R.C3;///////////////Disj(C2, C3);

}
⇒ C1 v ∃R.(C2 t C3); (5.37)

The correction of the example would be:

• Arroyo v= 1es originado.>;

Aguas Corrientes Naturales v ∃es originado.Manantial;

Torrente v ∃es originado.(Manantial tGlaciar tMasa de Hielo);

Torrente v Arroyo;

Arroyo v Aguas Corrientes Naturales;

Disj(Manantial, (Glaciar tMasa de Hielo));

64 CHAPTER 5. LINT-BASED ANTIPATTERNS

This antipattern is almost as complex as ECRWIP, but we do not use an

inverse property. We provide an example implementation of this antipattern

(Code 35 and Code 36). This implementation has already covered basic and

extended formula for the detection process. On the detection process, we suggest

to choose an axiom containing a parent class (if there is a subclass relation) which

will be removed on the action process.

Code 35 Pseudocode for SOSER (5.36)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom1

if superClass is not an exact cardinality restriction

continue to the next loop

let = nR.C = superClass

if n 6= 1

continue to the next loop

if C is not OWL Thing

continue to the next loop

subPropertiesR :=get all sub property of R

add R into subPropertiesR

for each axiom2 in subClassAxioms

let (C1a v superClass) = axiom2

if superClass is not ∃ restriction

continue to the next loop

let ∃R1.C2 = superClass

if R1 /∈ subPropertiesR

continue to the next loop

if neither C2 is a class nor UnionOf

continue to the next loop

for each axiom3 in subClassAxioms

let (C1b v superClass) = axiom3

if superClass is not ∃ restriction

continue to the next loop

let ∃R2.C3 = superClass

if R2 /∈ subPropertiesR

continue to the next loop

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 65

...

if neither C2 is a class nor UnionOf

continue to the next loop

if C1 v∗ C1a and C1 v∗ C1b holds

bottomClass := C1

topClass1 := C1a

topClass2 := C1b

else if C1a v∗ C1 and C1a v∗ C1b holds

bottomClass := C1a

topClass1 := C1

topClass2 := C1b;

else if C1b v∗ C1 and C1b v∗ C1a holds

bottomClass := C1b

topClass1 := C1

topClass2 := C1a

else

continue to the next loop

if Disj(C2, C3)

subPropertyAxioms := get all axioms performing R1 subPropertyOf R

and R2 subPropertyOf R if possible

disjointAxioms := get all axioms performing

the disjointness of C2 and C3

ancestorAxioms1 := get all axioms performing

bottomClass v∗ topClass1

ancestorAxioms2 := get all axioms performing

bottomClass v∗ topClass2

axiomList :=[axiom1, axiom2, axiom3] + subPropertyAxioms+

disjointAxioms + ancestorAxioms1 + ancestorAxioms2

if topClass1 == C1

if topClass2 == C1a

paramList := [C2, C3, C1a, R1, axiom2]

else

paramList := [C2, C3, C1b, R2, axiom2]

else if topClass2 == C1

if topClass1 == C1a

paramList := [C2, C3, C1a, R1, axiom2]

else

paramList := [C2, C3, C1b, R2, axiom2]

else

paramList := [C2, C3, C1b, R2, axiom2]

add pair (axiomList, paramList) into results

return results

66 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 36 Pseudocode for SOSER (5.37)

Load var [C2, C3, Class,Relation, axiom] from detection process

removedAction := create an action to remove axiom3

newAxiom := Class v ∃Relation.(C2 t C3)

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.2 Cognitive Logical AntiPatterns (CLAP)

5.2.1 AntiPattern SynonymOrEquivalence (SOE)

C1 ≡ C2; (5.38)

The ontology developer wants to express that two classes C1 and C2 are iden-

tical. This is not very useful in a single ontology that does not import others.

Indeed, what the ontology developer generally wants to represent is a termino-

logical synonymy relation: the class C1 has two labels: C1 and C2. Usually one

of the classes is not used anywhere else in the axioms defined in the ontology. In

HydrOntology, this antipattern appears six times The following is an example of

this antipattern in HydrOntology:

• Afluente ≡ Río;

The proposal for avoiding this antipattern is the following (if C2 is the less

used term in the ontology) add all the comments and labels of C2 into C1 and

remove C2.

C1≡ C2;/////// ⇒ C1.[rdfs : label|comment] = C2.[rdfs : label|comment](5.39)

For the example above, Afluente and Río respectively have term frequency

24 and 146. The proposal of this antipattern will remove the class Afluente. Río

will have some additional labels from Afluente as follows:

• [Provenance] : Curso de agua principal − Catálogo de fenómenos.

Proyecto GEOALEX

• [Provenance] : Directiva Marco del Agua.Unión Europea

• [Provenance] : Water Framework Directive. European Union

• [Comment] : Masa de agua continental que fluye en su mayor parte sobre

la superficie del suelo, pero que puede fluir bajo tierra en parte de su curso

5.2. COGNITIVE LOGICAL ANTIPATTERNS (CLAP) 67

• [label] : Curso de agua principal

• [label] : Curso fluvial

• [label] : River

An implementation of this antipattern is simpler than EID antipattern. The

Code 37 represents the detection process of it, while the Code 38 represents the

action process.

Code 37 Pseudocode for SOE (5.38)

results is a list of pair (list of axiom, list of parameter for action process)

equivalentAxiomsOntology is a map of equivalent axiom and ontology in the ontologies

for each (axiom, ontology) in equivalentAxiomsOntology

let (C1 ≡ C2) = axiom

if C2 is not a class

continue to the next loop

if C1 exists in ontologies\{ontology}‡‡

continue to the next loop

if C2 exists in ontologies\ontology
continue to the next loop

freq1 := count the frequency of concept C1 used

freq2 := count the frequency of concept C2 used

annotationAxiom1 := create annotation axiom on C1

with comment Termfrequency : [freq1]

annotationAxiom2 := create annotation axiom on C2

with comment Termfrequency : [freq2]

axiomList := [axiom, annotationAxiom1, annotationAxiom2]

paramList := [C1, C2, axiom, freq1, freq2]

add pair (axiomList, paramList) into results

return results

68 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 38 Pseudocode for SOE (5.39)

Load var [C1, C2, axiom, freq1, freq2] from detection process

actionList := listofaction

if freq1 6= freq2

removedAction := create an action to remove axiom

add removedAction into actionList

if freq1 > freq2

removedAction := create an action to remove class C2

add removedAction into actionList

annotationAxioms := get all annotation axiom of class C2

for each annAxiom in annotationAxioms

addedAction := create an action to add the annotation axiom annAxiom

into C1

add addedAction into actionList

else

removedAction := create an action to remove class C1

add removedAction into actionList

annotationAxioms := get all annotation axiom of class C1

for each annAxiom in annotationAxioms

addedAction := create an action to add the annotation axiom annAxiom

into C2

add addedAction into actionList

return actionList

5.2.2 AntiPattern SumOfSom (SOS)

C1 v ∃R.C2;C1 v ∃R.C3;Disj(C2, C3); (5.40)

The ontology developer has added a new existential restriction without re-

membering that he has already defined another existential restriction for the

same class and property. Although this could be no problem in some cases (e.g.,

a child has at least one mother and at least one father), in many cases it represents

a modeling error. Moreover notice that this antipattern implied a minimal max-

imal cardinality restriction (MMCaR) C1 v ∃R.C2;C1 v ∃R.C3;Disj(C2, C3);�
C1 v (≥ 2R.>). When the antipattern is detected, we should check if any MM-

CaR antipattern occurred in order to produce an ECR one. The following is an

example of this antipattern:

• Rio v ∃puede fluir.Corriente Subterránea;

Rio v ∃puede fluir.Ponor;

5.3. GUIDELINES 69

Ontology developers should understand clearly the combination of two exis-

tential restrictions. Our proposal is to clarify the modeling thus we propose to

merge the two axioms in one existential restriction using disjunction of C2 and

C3.

C1 v ∃R.C2;C1 v ∃R.C3;///////////////////////////////Disj(C2, C3); ⇒ C1 v ∃R.(C2 t C3); (5.41)

An implementation of this antipattern will follow the implementation of an-

tipattern OIL (see Code 10), but instead of universal restrictions here, we use

existential restrictions.

5.3 Guidelines

5.3.1 Guideline UnionInEquivalency(UIE)

C1 ≡ C1 t C2; (5.42)

The ontology developer may want to say that C2 does not take any instances

outside of C1. Instead of defining C1 as the equivalency of C1 t C2, it could be

more appropriate to state that C2 is a subclass of C1. The following is an example

of this antipattern in HydrOntology:

• Deposito ≡ Deposito tRecinto;

We propose a subClass relation as impact of equivalency formula 5.42.

C1 ≡ C1 t C2;///////////////// ⇒ C2 v C1; (5.43)

After applying the recommendation, the correction would be:

• Recinto v Deposito;

We take into account the number of operands in the union. Thus, we need to

classify whether an operand belongs to a group that each of element is equivalent

with C1 or not (see the Code 39). For every operand that is not equivalent with

C1, we construct a new subclass relation (see the Code 40).

70 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 39 Pseudocode for UIE (5.42)

results is a list of pair (list of axiom, list of parameter for action process)

equivalentAxioms is a set of equivalent axiom in the ontology

for each axiom in equivalentAxioms

let (C1 ≡ unionClass) = axiom

if unionClass is not a union

continue to the next loop

if all operands in unionClass are a class

continue to the next loop

equivalentClosure := get all class that equivalent with C1

operandsEquiv := [], set of operands that are equivalent with C1

operandsNot := [], set of operands that are not equivalent with C1

equivalentAxioms := [], set of equivalent axiom

for each operand in operands of unionClass

if operand ∈ equivalentClosure

add operand into operandsEquiv

equAxioms := get all axioms performing operand ≡ ∗C1

equivalentAxioms := equivalentAxioms + equAxioms

else

add operand into operandsNot

if |operandsEquiv| > 0 and |operandsNot| > 0

axiomList := [axiom] + equivalentAxioms

paramList := [axiom,C1, operandsNot]

add pair (axiomList, paramList) into results

return results

Code 40 Pseudocode for UIE (5.43)

Load var [axiom,C1, operandsNot] from detection process

removedAction := create an action to remove axiom

addedActionList is a list

for each operand in operandsNot

newAxiom := operand v C1

addedAction := create an action to add newAxiom

add addedAction into addedActionList

return [removedAction] + addedActionList

5.3.2 Guideline Existential & Cardinality Restriction(ECR)

C1 v ∃R.C2;C1 v (≥ 2R.>); (for example) (5.44)

5.3. GUIDELINES 71

Ontology developers with little background in formal logic find difficult to

understand that ”only” does not imply ”some” [18]. This antipattern is a coun-

terpart of that fact. Developers may forget that existential restrictions contain

a cardinality constraint: C1 v ∃R.C2 � C1 v (≥ 1R.C2). Thus, when they com-

bine existential and cardinality restrictions, they may be actually thinking about

universal restrictions with those cardinality constraints. This antipattern can be

a complex one because it may contain a SOS antipattern and a MMCaR one.

The following is an example of this antipattern in HydrOntology:

• Estero v ∃está proxima.Desembocadura

Estero v≥ 1está proxima.>

We propose to transform the existential restriction into a universal one when

a cardinality restriction exists.

C1 v ∃R.C2;///////////////C1 v (≥ 2R.>); ⇒ C1 v ∀R.C2; (5.45)

Because of this proposal, the correction of the example would be:

• Estero v ∀está proxima.Desembocadura

Estero v≥ 1está proxima.>

It is easy to create an implementation of this antipattern, since what we need

has been implemented in the previous antipatterns. The Code 41 and 42 are an

implementation of this antipattern.

72 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 41 Pseudocode for ECR (5.44)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology

for each axiom1 in subClassAxioms

let (C1 v superClass) = axiom1

if superClass is not a ≥-restriction

continue to the next loop

let ≥ xR.C = superClass

if C is not OWL Thing

continue to the next loop

subClassAxioms2 := get all subClassAxiom whose the subClass is C1

for each axiom2 in subClassAxioms2

let (C1 v superClass) = axiom2

if superClass is not ∃ restriction

continue to the next loop

let ∃R2.C2 = superClass

if R 6= R2

continue to the next loop

axiomList := [axiom1, axiom2]

paramList := [C1, C2, R, axiom2]

add pair (axiomList, paramList) into results

return results

Code 42 Pseudocode for ECR (5.45)

Load var [C1, C2, R, axiom2] from detection process

removedAction := create an action to remove axiom2

newAxiom := C1 v ∀R.C2

addedAction := create an action to add newAxiom

return [removedAction, addedAction]

5.3.3 Guideline Distributivity On Subclass (DOS)

C1 v C21 u ... u C2n; (5.46)

Sometimes, we cannot see a consistency because a axiom is inside of another

axiom. The ontology developer has developed a complex axiom and he does not

realize that it can be decomposed to several axioms. By applying distributivity on

subclass relation over intersection, it will remove the original axiom and produce

n new axioms that will make debugging process easier.

5.3. GUIDELINES 73

In HydrOntology, this antipattern appears three times.

• Confluencia v (∃conecta.Río) u (= 2conecta.>);

• Aguas Corrientes Naturales v (∀desemboca.(Aguas Corrientes

tAguas Marinas tAguas Quietas)) u (= 1desemboca.>);

• Captación v (∃captura.Río) u (= 2captura.>);

We propose a recommendation below that semantically both sides are equiv-

alent.

C1 v C21 u ... u C2n;///////////////////////// ⇒ C1 v C21; ...;C1 v C2n; (5.47)

We will get the correction of examples as follows:

• Confluencia v ∃conecta.Río;

Confluencia v= 2conecta.>;

• Aguas Corrientes Naturales v ∀desemboca.(Aguas Corrientes

tAguas Marinas tAguas Quietas);

Aguas Corrientes Naturales v= 1desemboca.>;

• Captación v ∃captura.Río;

Captación v= 2captura.>;

The detection process of this antipattern is implemented in very simple way

on the Code 43. The action process (Code 44) follows the action process of

antipattern UIE, but we have another direction of v for each operand.

Code 43 Pseudocode for DOS (5.46)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axioms in the ontology

for each axiom in subClassAxioms

let (C1 v superClass) = axiom

if superClass is an intersection

add ([axiom], [axiom,C1, operands]) into results

return results

74 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 44 Pseudocode for DOS (5.47)

Load var [axiom,C1, operands] from detection process

removedAction := create an action to remove axiom

addedActionList is a list

for each operand in operands

newAxiom := C1 v operand

addedAction := create an action to add newAxiom

add addedAction into addedActionList

return [removedAction] + addedActionList

Chapter 6

Apero Plug-in

This chapter presents the support tool that we call Apero (AntiPatternExtRac-

tiOn). Our discussion covers how to analyze, design and implement this tool.

6.1 Analysis

OWL ontology debugging features have been proposed in the literature with dif-

ferent degrees of formality ([9],[15],[23]). But, they are mainly focused on the

explanations of logical entailments and are not so focused on the ontology engi-

neering side. A debugging strategy that involves the ontology engineering side,

has been proposed [5]. It leads an ontology developer how to debug incoherent

ontologies. It has proposed a global ontology debugging life cycle involving the

role of knowledge engineer and domain expert. We assume that an ontology

developer has those roles. Figure 6.1 displays graphically this strategy.

From the workflow that is described on the figure, we propose Apero as a plug-

in that we attach into Protégé which must have the following functionalities:

• Manual processes in the workflow are checking for unsatisfiable classes,

choosing a root unsatisfiable classes, computing justification or inspecting

class definition, documentation, validation and creation of a new version

of the ontology. Apero must be compatible with all manual processes.

Especially for documentation and validation, Apero must provide enough

information to support those processes. The information should cover :

– the formula of an antipattern

– how an antipattern is constructed

– available recommendations and their description

– a set of actions that the ontology developer can execute

75

76 CHAPTER 6. APERO PLUG-IN

• In order to support the manual process, especially inspecting class defini-

tions, Apero will provide a transformation process that helps the ontology

developer to convert a class definition into an expected one. He needs to

save into a new ontology since the ontology before and after this process

are unlike.

The axiom transformation has several rules that we cannot classify them

into an antipattern. For the current implementation, we will limit the im-

plementation only to one rule transformation (formula 6.1).

C1 ≡ C21 u ... u C2n; ⇒ C1 v C21; ...;C1 v C2n; (6.1)

• Apero will identify or detect an antipattern.

An antipattern is constructed by a set of axioms, as an instance of the

antipattern. Two instances of an antipattern possibly can share axioms.

We choose to repeat displaying the axiom, thus the ontology developer find

it easier to see how an instance is built. The result of this process is a table

of antipattern instances.

• Apero must able to do some corrections and show the result as a recom-

mendation for the future solution.

The ontology developer as the user probably wants to focus on a certain

instance. Apero will provide the correction immediately for each observed

instance, without affecting the current ontology.

• Apero will apply the selected recommendation as a solution.

A recommendation consists of a set of actions adding or removing axioms

6.2. DESIGN 77

produced by correction of an antipattern.

• Apero facilitates users to propose and create new antipattern.

Apero must be easy to be configured and allow users to propose new an-

tipattern. They are also expected to be able to create new antipatterns as

easy as possible.

• Apero will accommodate two type of antipattern implementations.

We know that there are two types of antipatterns in our previous discussion.

Both OPPL and Lint should be implemented transparently.

6.2 Design

6.2.1 Configuration

Configuration of Apero is a configuration that contains information needed by

Apero. For every item of information in the configuration we call it as parameter.

According to what we have already analyzed, we design the configuration as the

following parameters:

• OPPL folder

Since we will have two types of antipatterns, the configuration must ac-

commodate these. An OPPL antipattern is provided as a script in a text

file. Thus, we put all scripts into a specific folder that we parameterize

OPPLFolder.

• Group of antipattern category This configuration covers information about

all groups of antipattern category. It consists of number of group and group

detail as parameters. A group has name, description and remark (see table

6.2.1).

Table 6.1: A group of antipattern category

No Parameter Optional Summary

1 name group name and must be unique

2 desc Yes Short description of this group

3 remark Yes Full description of this group

• Antipattern This configuration covers information about all antipatterns. It

consists of number of antipattern and detail of antipattern. A antipattern

configuration has information depending on the type of implementation,

namely oppl and lint as we state in the table 6.2 and 6.3 respectively.

The validity of configuration is determined by its parameters with condition

as follows:

78 CHAPTER 6. APERO PLUG-IN

Table 6.2: A OPPL-based antipattern configuration

No Parameter Optional Summary

1 name Antipattern name and must be unique

2 formula Latex formula for this antipattern

3 formulaDetail Yes Additional latex formula if necessary

3 desc Yes Description of this antipattern

4 type Type of this antipattern, either Lint or OPPL

5 opplQueryPrefix file name that contains variable
declaration and query part of OPPL script
and represent a detection process

6 numberOfAction Number of possible recommendation

7 group Group name (see table 6.2.1)

For each action 1 to [numberOfAction]

8 action[i].name Action name and must be unique in this antipattern,
[i] represents a sequence number of the action

9 action[i].query file name that contains action part of OPPL Script
and represents an action process

10 action[i].remark Yes Description of this action

Table 6.3: A Lint-based antipattern configuration

No Parameter Optional Summary

1 name Antipattern name and must be unique

2 formula Latex formula for this antipattern

3 formulaDetail Yes Additional latex formula if necessary

3 desc Yes Description of this antipattern

4 type Type of this antipattern, either Lint or OPPL

5 lintQueryClass Java class that represents a detection process

6 numberOfAction Number of possible recommendation

7 group Group name (see table 6.2.1)

For each action 1 to [numberOfAction]

8 action[i].name Action name and must be unique in this antipattern,
[i] represents a sequence number of the action

9 action[i].lintClass Java class that represents an action process

10 action[i].remark Yes Description of this action

• Antipattern names must be unique.

• The total of existing antipattern in the configuration has be to equal or

greater than the number of antipattern, with the correct sequence number.

• The total number of groups in the configuration has to be equal or greater

than the number of groups, with the correct sequence number.

• Action names for every antipattern must be unique.

6.2. DESIGN 79

• The total number of actions for every antipattern has to be equal or greater

than its number of actions, with the correct sequence number.

• The value of parameter type are only OPPL (not case sensitive) and lint

. Otherwise, we treat it as a Lint-based antipattern.

• A OPPL-based antipattern must have parameter opplQueryPrefix and

action[i].query.

• A Lint-based antipattern must have parameter lintQueryClass and

action[i].lintClass.

• The text file of parameter opplQueryPrefix and action[i].query must be

exist in the folder parameter OPPLFolder.

• The Java class of parameter lintQueryClass and action[i].lintClass must

be exist in the package plug-in.

• The value of parameter group for every antipattern has to be in one of

existing groups.

• All parameters must have a value except an optional parameter.

6.2.2 Transformation Process Design

Graphically, we design the transformation process on Figure 6.1. We expect that

Apero will find all axioms from the ontology that fulfill the existing transforma-

tion rules, and provide it together with its solutions (result axiom and annotation

axiom). Besides getting the result axiom as result of the process, Apero will also

create a new annotation axiom for every result axiom informing to the ontology

developer that this result axiom is automatically generated by Apero. After he

manually selects the transformation to proceed, Apero will transform or execute

the selected transformation permanently into the ontology. He must save the

current ontology as a new ontology since both ontologies before and after the

process are not the same anymore.

6.2.3 Detection Process Design

The figure 6.2 displays a flowchart of the detection process. What we display on

the flowchart is briefly how Apero detects an antipattern. Details of the detection

process for every antipattern have been described with pseudocodes in Chapter

4 and 5.

The ontology developer probably wants to observe some antipatterns. Af-

ter he chooses some antipatterns, for every selected antipattern, Apero will try

to match with all axioms in the ontology. The matching axioms (including its

80 CHAPTER 6. APERO PLUG-IN

Figure 6.1: Transformation process flowchart

binding variables) with an antipattern is called as an instance of antipattern. It

is important to keep pair of the matching axioms and its binding variables that

we can use as parameters for execution process. Since we have two types of im-

plementation (OPPL and Lint), Apero has two different detection process. In

OPPL, a matched axiom is called an instantiated axiom.

OPPL naturally can evaluate a query (detection and action) once. Evalua-

tion only simulates, does not affect to the ontology, and takes every instantiated

axioms and its binding variables as an instance. Thus in order to complete a

detection query, we always take one action query. Meanwhile, Lint sequentially

takes Java class for detection process, runs it and returns pairs of matched axioms

and its binding variables as instances. Apero will memorize every set of instance

into a detection table, such that Apero will be easy and fast to display the result.

6.2.4 Execution Process Design

The figure 6.3 displays a flowchart of the execution process. This covers a lot

of manual process as well as automatic process. We assume that the ontology

developer is focusing on an antipattern. The flowchart briefly shows how Apero

proceed with instances of antipatterns after the detection process. At one point

in the flowchart, we will run the action process that we discussed in Chapter 4

and Chapter 5. This action process will be run in the box EvaluatebyOPPL or

GetOWLActionListbyLint. An action list as output of those processes is a list

6.2. DESIGN 81

Figure 6.2: Detection process flowchart

Figure 6.3: Execution process flowchart

82 CHAPTER 6. APERO PLUG-IN

of axiom changes in Apero. An axiom change is an action that has the ability to

add or remove the mentioned axiom in an ontology.

The ontology developer can select more than one instance. Meanwhile, an

antipattern has some possible actions. We will display their name in the list

but he can only choose one. An action name is automatically set to the first

option. Once he selects either instance or action, Apero automatically generates

corrections as recommendations.

Like detection process, in this process, we apply two different implementation

in order to generate a recommendation. On OPPL, we still use evaluation with

additional binding variables on the detection part of a query.

A binding variable in OPPL syntax is a string ?[variableName]MATCH

”[variableV alue]”. We put every binding variable sequentially at the end of the

detection part. After Apero runs the evaluation, it will return a set of axiom

change. On Lint implementation, the process runs easier. Apero will run a Java-

class implementation of the action process with binding variables as input and

generate a set of axiom changes. A binding variable in Lint implementation is

just a vector or list of variable values. We do not need the variable name because

the Java-class has already known it from the sequence in the vector. For every

selected instance, Apero will collect all sets of axiom changes together in an action

list.

This action list that contains a set of axiom change needs to be validated and

contribution of users is very important here. They can delete unappropriated

axiom changes or try another possible action. To finalize the process, Apero will

execute all final axiom changes and affect directly into the current ontology. Since

the ontology is updated, it is important to create new version of this ontology.

6.3 Implementation

6.3.1 Environment

The plug-in has been successfully built using Java programming language with

the following environments:

• Java Development Kit 1.6 and Eclipse as the development tool.

• OWL API 2.0 under Protégé 4.0 to enable to use classes and functionality

in Protégé.

• OPPL 2 API (org.coode.oppl-API.jar) to allow to access all OPPL function.
∗

∗the source of API is available at http://sourceforge.net/projects/oppl2/files/

6.3. IMPLEMENTATION 83

Figure 6.4: Apero as a plug-in in Protégé

• JLatextMath 0.9.1 to give a display of formula as mathematic symbol in

Latex. It will help users to understand how to describe an antipattern

detection. †

The last two above has been bundled together with Apero implementation.

The implementation of Apero itself is only a Jar (Java Archive) file that is exe-

cutable only in Protégé. All compiled files in java classes and configuration file

are archived in the Jar file that we name it as org.upm.apero.jar. In order to be

recognized by Protégé, we have to put inside the folder plug− ins in the Protégé

installation folder. Apero has been tested on Windows system with Protégé 4.0

or above.

The figure 6.4 is appearance of Apero in Protégé at the first time Protégé

loaded. We will find Apero in a window-tab of Protégé. Apero also can be ac-

cessed from the Protégé menu [Tabs >Apero] or [View >Ontology Views >Apero]

(see figure 6.5 and 6.6).

6.3.2 Antipattern Implementation

Implementation of an antipattern is started from its configuration (see subsec-

tion 6.2.1). Configuration in Apero is provided as a java-properties file (see the

Figure 6.7). Content of this file is a set of lines containing [variableName] =

[variableV alue]. Every non-optional parameter must be exist in this file.

†the source of JLatextMath 0.9.1 is available at

84 CHAPTER 6. APERO PLUG-IN

Figure 6.5: How to access Apero from menu [Tabs] in Protégé

Figure 6.6: How to access Apero from menu [View] in Protégé

6.3. IMPLEMENTATION 85

Figure 6.7: A Java-properties file

86 CHAPTER 6. APERO PLUG-IN

In previous chapters, an antipattern could have more than one detection type.

For instance, AIO has two detection types (see 5.1 and 5.2). We consider it in

Apero as two different antipatterns. Hence, we use numbering on their name to

keep the original antipattern. Our research has defined three types of antipattern,

thus we name them in Apero as DLAP, CLAP and Guideline.

The current implementation has 29 antipatterns consisting 4 OPPL and 25

Lint-based antipatterns, distributed with 20 antipatterns in DLAP, 2 antipat-

terns in CLAP and 7 antipatterns in Guidelines. An antipattern is configured

according to our design in Table 6.2 and 6.3. In the file, we found it with ad-

ditional prefix pattern[i] where [i] is a sequence number. We use dot symbol to

separate antipattern sequence and its parameter. We also use this for the group

of antipattern.

In the Figure 6.7, we have MIZ as example of OPPL-based antipattern. The

Code 45 and 46 are content of file MIZ prefix.txt and MIZ 1.txt, respectively.

Those file must be exist in the folder OPPLFolder parameter which is OPPL.

The first file exactly represents the formula of MIZ (see 4.5) and formula pa-

rameter, while the second file represents the recommendation formula (see 4.6).

?c1:CLASS,

?r:OBJECTPROPERTY

Select

?c1 subClassOf ?r min 0 Thing

Where ?c1 != Thing

Code 45: File MIZ prefix.txt

begin

remove ?c1 subClassOf ?r min 0 Thing

end;

Code 46: File MIZ 1.txt

A Lint-based antipattern implementation is programmable with Java pro-

gramming language. The figure 6.8 displays a UML class diagram (without

stereotype ‡) of the implementation. We provide OILWI antipattern as an exam-

ple. According to the configuration, OILWI has a detection class OILWI Query

http://forge.scilab.org/index.php/p/jlatexmath/downloads/
‡Graphically, a stereotype is rendered as a name enclosed by �� and placed above the

name of another element. In addition or alternatively it may be indicated by a specific icon.

6.3. IMPLEMENTATION 87

Figure 6.8: A UML Class Diagram Lint-based Antipattern implementation

and an action class OILWI Action1. If an antipattern has more than one pos-

sible action, it also has more than one action class. The class name is arbitrary.

Two antipatterns probably share the same action, then they can use the same

class.

A detection class must implement the following methods : §

• findAxiom(OWLReasoner,OWLOntologyManager,OWLOntology) from

interface LintAntiPatternQuery.

OWLReasoner is a reasoner implementation that may be used by a devel-

oper for a certain purpose. As an exchange of using reasoner, additional

response time may be applied. OWLOntologyManager is a class that en-

ables the developer to manipulate an ontology. OWLOntology represents

the current ontology.

• getOWLActionList(OWLDataFactory,OWLOntology, V ector < Object >

) from interface LintAntiPatternAction.

The purpose of using OWLDataFactory is to create new axioms and

V ector < Object > is a representation of binding variables.

Both methods represent implementation of the box findAxiomByLint and

GetOWLActionListByLint on the figure 6.2 and 6.3, respectively. Vector of

§This is a term in Java programming language that means a procedure or function.

88 CHAPTER 6. APERO PLUG-IN

Figure 6.9: A mapping antipattern configuration to the GUI

class APResult is output of detection class. Class APResult has the matched

axioms. If we proceed a OPPL-based antipattern, then we will get instances

of class PairOPPLAPResult (sub class of APResult) that also has binding

variables completing the matched axioms as a pair. Meanwhile, processing a

Lint-based antipattern, we will get instance of class PairLintAPResult (sub

class of APResult) that also has binding variables namely vector of variable value.

The different between class PairOPPLAPResult and PairLintAPResult is the

representation of binding variables like we discuss in design section.

In order to help a developer of antipattern, we provide a class OWLFunc that

has a lot of functions to solve some problem, for instance to get all subclasses of

a class and get all axioms performing disjointness between two classes. You find

the complete list of function in the Appendix A.

The figure 6.9 shows how every parameter in configuration displayed in the

Apero. We have several remarks as follows:

• Parameter number 1, 4 and 10 will be displayed directly at the position

shown in the figure.

6.3. IMPLEMENTATION 89

• Apero will render parameter number 2 becoming latex symbol

• Parameter number 3 yields a hyperlink. If the ontology developer clicks on

it, a new window will appear displaying latex formula with a bigger area

than parameter number two. Parameter number 3 does not exist then that

link will not exist either.

• Parameter number 5 and 6 will give output and put it into the table as

shown on the figure, no matter what type of implementation.

• Parameter number 7 remunerates number of action and each name of action

(parameter number 8) will be displayed.

• Parameter number 9 gives output and put it into the list.

• Parameter number 11 will categorize this antipattern and perform a tree.

6.3.3 Transformation Process Implementation

This process is very important because it is potential to emerge an antipattern.

The figure 6.10 is the interface for user to enable the transformation. We have the

OIL antipattern as an example here. Before transformation, we do not have OIL

antipattern. The ontology developer starts this transformation by pushing the

button [Transform Axiom]. Apero will display all possible axiom transformation

in a table. Every row in the table consists of a number, list of axiom completed

with its actions, and a check box [Proceed] that indicates whether you want to

transform this row or not. An original axiom is begun with an action REMOV E,

while a result axiom is begun with an action ADD.

A new annotation comment axiom ”Generated by Apero Plug-in” appears to

indicate this axiom came from the transformation process as an acknowledgment

for the ontology developer. The figure 6.11 shows the new axioms with different

icon of annotation since they have an annotation.

After transformation, Apero successfully detects the OIL antipattern (see

figure 6.12). Clearly, three axioms from the instance of antipattern come from

the equivalent axiom before transformation process. Finally, it is necessary to

create new version of ontology since both ontology before and after transformation

are not the same.

6.3.4 Detection Process Implementation

The figure 6.13 tells how the ontology developer runs a detection process. He has

to click button [Find Antipattern] to display dialog [Find Antipattern]. On this

dialog, he can select some antipatterns that he wants to observe. [Ellipse time]

indicates the processing time to run the process. If he only wants to display the

90 CHAPTER 6. APERO PLUG-IN

Figure 6.10: Before transformation

Figure 6.11: An annotation acknowledgment

Figure 6.12: After transformation

6.3. IMPLEMENTATION 91

Figure 6.13: Before detection process

applied antipattern, he has to click check box [Show Only applied patterns]. Text

area [Log] will record all activity list of this process. Button [Run] will start the

detection process, while button [Stop] will stop detecting.

After finishing detection, the dialog will show a message completeness and

Apero will update the tree of antipatterns at the left side of the window (see

figure 6.14). Every antipattern name will be displayed together with the number

of instances found in the ontology.

The ontology developer may want to observe an antipattern, for example :

SMALO antipattern. He can click on an antipattern in the tree of antipattern. As

the result, Apero will display all instances of SMALO antipattern in this ontology.

Apero also will display all available information of the antipattern configuration.

If we crosscheck every instance to pattern formula, they should match each other

with a certain substitution of variables.

6.3.5 Execution Process Implementation

The figure 6.16 and 6.17 describe an execution process. We use AIO as an

example here. After observation, the ontology developer realizes that there are

something wrong in the ontology. Two instances of AIO antipattern have proved

it. A recommendation is built once he selects an instance to be processed by

marking on the check box [proceed] column in the table. He may want to see

the compound recommendation by selecting more than one instance. A possible

action will trigger a recommendation (see the figure 6.17). A description of the

92 CHAPTER 6. APERO PLUG-IN

Figure 6.14: After detection process

Figure 6.15: SMALO antipattern

6.3. IMPLEMENTATION 93

Figure 6.16: Execution process 1

Figure 6.17: Execution process 2

chosen action is given by the text [Remark].

A recommendation is composed by an action list that contains the list of

axiom changes. The ontology developer needs to validate every axiom change

with the domain expert. Probably, he may need to remove an axiom change. He

also can reset the recommendation to the initial condition by using the button

[Reset]. After he is sure, he can push the button [execute] that will execute

all axiom change and permanently update the current ontology. The effect of

execution on the example of AIO is described on the figure 6.18 and 6.19. The

final step, he need to create new version of ontology because of this execution.

94 CHAPTER 6. APERO PLUG-IN

Figure 6.18: Description of class Ponor before execution

Figure 6.19: Description of class Ponor after execution

6.4 Debugging Strategy Based on Antipatterns

An initial study about debugging strategy based on antipatterns has been estab-

lished in [4] as shown in the Figure 6.20. All antipattern appeared in the figure,

are the list of antipattern in [4].

New antipatterns have been discovered and a debugging strategy must be

revised. Users can use Apero plug-in to apply the strategy easily and the strategy

itself will guide users how to debug an ontology optimally. Antipattern may

lead to another antipattern after executing a recommendation. It triggers a

dependency among antipattern in the strategy.

The figure 6.21 displays a new debugging strategy six steps. The first step of

strategy follows the one in the former debugging strategy. Applying SOE will af-

fect removing a class. It means that our debugging will be easier since if the class

is unsatisfiable then the number of unsatisfiable class decreased by one. The sec-

ond step is to check Guidelines that use semantic equivalences between formulas

in a recommendation. They are the DCS and DOS antipatterns. Applying these

6.4. DEBUGGING STRATEGY BASED ON ANTIPATTERNS 95

Figure 6.20: Debugging Strategy in [4]

antipatterns will give positive effect of antipattern finding for the next step. The

third step follows the second of the old strategy but, there are new two additional

antipattern namely EAD and UIE antipattern.

At the fourth step, there are the rest of DLAP, SOS and ECR. The sequence

in this step is optional. All antipattern can be combined as presented at the

figure. A new instance of antipattern is possible to be detected after several

combinations. At some point it will stop and you may continue to the next step.

Users can take freedom of DLAP antipatterns as stopping criteria because the

existence of DLAP implies there is at least one unsatisfiable class. The fifth step is

to remove superfluous axioms possibly detected by SMALO and MIZ antipattern.

We keep this axiom on the previous step because of performance reason. Some

antipatterns (OIL and OILWI) in DLAP need minimality property that can be

supported by one of axioms detected by antipatterns in this step.

At the sixth step, users probably need to know whether the ontology has

already been free of unsatisfiable class by classifying ontology. If there is no

unsatisfiable class, debugging process is done. Otherwise, users need to check

on the transformation dialog whether there is a suggestion or not. If there is

a suggestion, probably users need to clarify whether their modeling is correct.

Users may decide to stop if DLAP category is no longer detected with one note

which is a potential error or inconsistency that may appear in the future.

If reasoner detects an unsatisfiable class but Apero detects no DLAP an-

tipattern, then new antipattern must be discovered. The ideal condition is all

antipatterns in the world have been discovered. Surely, participation of reasoner

to classify the ontology is no longer needed.

96 CHAPTER 6. APERO PLUG-IN

Figure 6.21: New Debugging Strategy

Chapter 7

Evaluation

This chapter presents the evaluation of the Apero plug-in. The evaluation shows

that the Apero plug-in works as expected helping ontology developers to debug

an ontology.

7.1 Evalution Setup

The evaluation is done in a computer with the following hardware and software:

• CPU : Pentium Dual Core T250 2.00Hz.

• RAM : 904MB

• Storage : 18GB

• Microsoft Windows Server 2003 SP 2

• Java : Java Development Kit 1.6

• Protege : Protege 4.0

• SWOOP 2.3 as debugging tool for comparison purpose

7.2 Evalution Test Case and Plan

We prepare some ontologies as test cases to help us evaluating the Apero plug-in.

We also design them in a way so that they confirm with the work objectives

defined in the chapter 3. The table 7.1 displays the list of ontology used for our

evaluation.

We use a simple scenario to run test cases according to the figure 6.1 that

represents a global strategy for ontology debugging. Classifying an ontology by

97

98 CHAPTER 7. EVALUATION

Ontology Domain Ontology Languages Total Number of
name references number of unsatisfiable

classes classes

Computer Science University [1] english 29 9
organisation

Tambis full bioinformatic [19] english 395 144

Sweet Numeric Earth and [17] english 2364 2
Environment

HydrOntology hydrology [22] spanish 159 114

Table 7.1: List of ontologies

reasoner before running Apero is not needed, except if users want to highlight

some classes that are known unsatisfiable. However, users must remember that

classifying a big and complex ontology is a time-consuming task. Therefore, we

may skip two steps on the figure, namely [choose root of unsatisfiable class] and

[compute justification and inspect class definition].

As part of the scenario, we need to check if new formula representation will be

effective to show an antipattern. We need to remember tha a given latex formula

does not drive an instance of antipattern in the implementation directly. In other

words, it only gives visual representation of an antipattern with its instance to

users.

At the end of this evaluation, we expect to get some measurement about

response time and detection result. In order to measure response time of each

debugging, we run test for each ontology three times and take the average as

the result. While measuring response time and detecting antipatterns, we only

take the first cycle of detection without applying transformation rule, although

the transformation rule may lead to more findings. In addition, we apply all

antipatterns listed in this thesis.

Comparison with another debugging tool will show pros and cons of Apero.

We will compare Apero to SWOOP. All test cases above will participate in this

comparison.

7.3 Evaluation Result

The figure 7.1 shows new representation representing better than the old one.

In this example, we use symbol + and without this symbol, it is difficult to

explain to users how the formula is connected to the instance of antipattern.

We give underline on some classes to show C1 v+ C2 representing Albufera v
Laguna;Laguna v Aguas Quietas Naturales with substitution :

• C1 := Albufera

7.3. EVALUATION RESULT 99

Figure 7.1: New formula representation

• C2 := Aguas Quietas Naturales

In addition, the window [Formula detail] that appears after a user clicks the

hyperlink [Click here to see the detail of formula] will give users extra space to

express any condition more flexible.

The Table 7.2 is a summary of evaluation following the given scenario in 7.2.

The table shows that all test cases are done in less than 30 seconds even for big

ontology Sweet Numeric. HydrOntology, the complex among test cases, is done

only 3 seconds and we find 18 antipatterns with 45 instances.

Ontology Response time Total Dominant
(second) Antipattern Instance Antipattern Instance

Computer Science <1 3 4 UEWIP 2

Tambis full 1 5 42 DOS 27

Sweet Numeric 27 4 10 SOE 4

HydrOntology 3 18 45 EID,SID,SOE 6

Table 7.2: Summary of testing result

Meanwhile, the Table 7.3 represents distribution of antipattern finding in

all ontologies. Majority of known antipatterns is found in HydrOntology. This

indicate that users of HydrOntology do not have enough knowledge about logic

programming and how to write definition correctly.

100 CHAPTER 7. EVALUATION

No Antipattern Ontology
Computer Tambis Sweet HydrOntology

Science Full Numeric

DLAP

1 AIO 0 0 0 2

2 OIL 0 0 0 0

3 OILWI 0 0 0 1

4 UE 0 0 0 0

5 UEWI 0 0 0 3

6 UEWPI 0 0 0 1

7 UEWIP 2 0 0 2

8 VOV 0 0 2 0

9 EID 0 0 0 6

10 EAD 1 3 0 0

11 SID 0 0 0 6

12 SAD 0 0 0 0

13 MMCAR 1 0 0 0

14 ECRWIP 0 0 0 3

15 SOSER 0 0 0 2

CLAP

16 SOE 0 4 4 6

17 SOS 0 0 0 1

Guidelines

18 DOC 0 0 0 0

19 UIE 0 0 0 1

20 ECR 0 4 0 3

21 SMALO 0 4 0 2

22 MIZ 0 0 0 1

23 DOS 0 27 1 3

24 DCS 0 0 3 3

Table 7.3: Detail of testing result

Another phenomena that appears on the Table 7.3 is the significant appear-

ance occurred in Tambis ontology on DOS antipattern with 27 instances. The

large number of instances indicates that users of the ontology need to be trained

about how to write definitions. DOS antipattern may cause an antipattern in

DLAP to be undetectable. Coincidently, it is also be supported by finding of

146 axioms on the transformation dialog (see the Figure 7.2) that has only one

transformation rule almost similar to DOS. Especially for transformation, Users

must confirm the correctness of each listed axiom with the real world, so that

they are sure that transformation is needed.

7.3. EVALUATION RESULT 101

Figure 7.2: Transformation Detection

For equalization, we assume causes of unsatisfiability as instance of antipat-

tern. After running all test cases on Apero and SWOOP, we found several things

when debugging all ontologies as follows:

• Apero does not need a reasoner to detect an antipattern, but SWOOP needs

it (Pellet reasoner) to determine whether a class satisfiable or not, and root

or derived unsatisfiable class.

• SWOOP only detect causes of unsatisfiability (DLAP in Apero), but Apero

also can detect another potential causes of error on CLAP and Guideline.

• Focusing on DLAP and manually we generate root of unsatisfiable class can

be detected on Apero, the Table 7.4 show the detection result. Especially for

HydrOntology, after SWOOP fails to debug, we do not continue comparison

on root of unsatisfiable class.

Ontology Response time (second) Root of unsatisfiable class
Apero SWOOP Protege Reasoner Apero SWOOP

Computer Science <1 <1 5 4 5

Tambis full 1 5 3 3 3

Sweet Numeric 27 5 2 2 0

HydrOntology 3 Fail Not continued

Table 7.4: Comparison between Apero and SWOOP

The result on Computer Science tells us to improve number of antipattern

in Apero. Apero could not detect unsatisfiability of class CS Department

(see the Figure 7.3). This is also opportunity to define new antipattern with

helped by another tool such as SWOOP. Meanwhile, detection of SWOOP

102 CHAPTER 7. EVALUATION

Figure 7.3: Detection of CS Department on SWOOP

is better than Apero on Sweet Numeric because SWOOP fails to load some

indirect imported ontologies that are supposed to be imported by a direct

imported one. SWOOP on this example is able to load 2 of 9 indirect

imported ones. Therefore, SWOOP detects nothing because roots of un-

satisfiable class probably occur in a failure imported ontology.

• SWOOP is powerful to give recommendation by ranking every involved

axioms (see the Figure 7.4) but no explanation is given while Apero gives

recommendation according experience of user.

7.3. EVALUATION RESULT 103

Figure 7.4: Recommendation on SWOOP

Chapter 8

Conclusion and Future Work

Some work objectives have been accomplished by presentation on Chapter 4, 5

and 6. Moreover, we have done evaluation and confirmed some work objectives

and all hypotheses fulfilled. We have achieved some bullet points of conclusion

in this thesis as follows:

• This thesis has enriched the catalogue of antipattern from 10 antipatterns to

24 antipatterns. Some antipatterns have more than one detection pattern

(AIO, UEWI, UEWPI, UEWIP and MMCaR antipattern). In total, we

have collected 29 antipatterns.

• There are two additional symbols as representation of antipattern, namely ∗
(star) and + (plus). We have seen these symbols as completed DL-symbols

in formulating an antipattern especially to represent transitivity on subclass

(v) and equivalence (≡) relation.

• Both chapter 4 and 5 have classified implementation type of antipattern.

The easy antipattern may be classified to OPPL-based antipattern and

the rest must able to implemented by Lint, so we call it as Lint-based

antipattern.

• Apero plug-in has been built to help the ontology developer to debug an

ontology. Apero has implemented all antipatterns in this thesis and one

transformation rule. Response time to debug an ontology on test cases is

fast and there is no dependency to a reasoner.

• An antipattern has been a remedy to overcome difficulty in ontology de-

bugging. In addition, a proposed debugging strategy is able to guide the

ontology developer to solve inconsistency problem.

105

106 CHAPTER 8. CONCLUSION AND FUTURE WORK

• By comparing between Apero and SWOOP, overall Apero proposes a better

solution than SWOOP in ontology debugging for some reasons. Apero is

more stable because Apero does not depend on a reasoner, unlike SWOOP

does need a reasoner that somehow may not worked. Apero is able to de-

tect not only unsatisfiability class but also modeling error and guideline.

However, if reasoner works well, in some cases, SWOOP able to show num-

ber of unsatisfiability class better than Apero that depends on catalogue of

antipattern.

However, from our limitation and conclusion, this thesis also leads us to some

future works as follows:

• There are still a lot of antipattern that we need to identify. The catalogue of

antipattern must still be improved. So far, we found an antipattern during

debugging ontology manually. We also expect someone will discovery new

antipatterns in better way.

• We expect in the next research that someone will consider naming conven-

tion of antipattern.

• Implementation of Lint-based antipattern is Java-based. There is always

opportunity to improve an implementation such as inefficient code and more

comprehensive testing to ensure validity of implementation.

• We suggest to debug a huge ontology to test the reliability of Apero. It is

intended to find a bugs and idea for improvement.

• Discussion about debugging strategy based on antipatterns must be contin-

ued. It could be supported by performing evaluation by real user. It also

opportunity to have automatic debugging strategy on Apero in a certain

way.

• After introducing one transformation rule, for the next research, this topic

may be exploit further to get new transformation rules. A next version of

Apero is expected to have generic implementation of transformation.

• Implementation Lint-based antipattern exploits OWL API. It is a good idea

to try implementation by exploiting SPARQL Query Language for RDF.

Bibliography

[1] Reasoning for Ontology Engineering and Usage - ISWC 2008.

http://owl.cs.manchester.ac.uk/2008/iswc-tones/. [cited at p. 98]

[2] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F.

Patel-Schneider, L.A. Stein, et al. OWL web ontology language reference. W3C

recommendation, 10:2006–01, 2004. [cited at p. 49]

[3] Luis Manuel Vilches Blázquez, Miguel Ángel Bernabé Poveda, Maŕıa del Carmen

Suárez-Figueroa, Asunción Gómez-Pérez, and Antonio F. Rodŕıguez Pascual. Town-

tology & hydrontology: Relationship between urban and hydrographic features in

the geographic information domain. In Ontologies for Urban Development, pages

73–84. 2007. [cited at p. 8]

[4] Oscar Corcho, Catherine Roussey, and Luis Manuel Vilches Blazquez. Catalogue of

anti-patterns for formal ontology debugging. page 11, 2009. [cited at p. 7, 94, 95, 123]

[5] Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez, and Ivan Perez.

Pattern-based owl ontology debugging guidelines. page 11, 2009. [cited at p. 13, 14,

75, 124]

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press and McGraw-Hill, second edition edition,

2001. [cited at p. 32]

[7] Mikel Egaña, Robert Stevens, and Erick Antezana. Transforming the axiomisation

of ontologies: The ontology pre-processor language. In: Proceedings of OWLED

2008 DC OWL: Experiences and Directions, page 10, 2008. [cited at p. 11]

[8] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justifications in

owl. In Description Logics, 2009. [cited at p. 5]

[9] Sattler U Horridge M, Parsia B. Laconic and pricise justifications in owl. In: Proceed-

ings of 7th International Semantic Web Conference (ISWC), Karlsruhe, Germany,

LNCS 5318(323-338), 2008. [cited at p. 6, 8, 75]

[10] http://oppl2.sourceforge.net/grammar.html. Oppl grammar. [cited at p. ii, 111, 112,

114]

107

108 BIBLIOGRAPHY

[11] http://protege.stanford.edu/. The protégé ontology editor and knowledge acquisi-

tion system. [cited at p. 10]

[12] http://www.cs.man.ac.uk/ iannonel/lintRoll/index.html. Lint detection for owl on-

tologies and related protégé plug-in. [cited at p. 14]

[13] http://www.w3.org/TR/owl guide/. Owl 2 web ontology language guide, 2004.

[cited at p. 9, 11]

[14] Luigi Iannone, Mikel Egaña, Alan Rector, and Robert Stevens. Augmenting the

expressivity of the ontology pre-processor language. In: Proceedings of OWLED

2008 DC OWL:Experiences and Directions, page 6, 2008. [cited at p. 11, 26]

[15] Sirin E Cuenca-Grau B. Kalyanpur A, Parsia B. Repairing unsatisfiable classes in

owl ontologies. In: Proceedings of 3rd European Semantic Web Conference (ESWC),

Budva, Montenegero, LNCS 4011(170-184), 2006. [cited at p. 6, 8, 75]

[16] Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vasconcelos. A fine-

grained approach to resolving unsatisfiable ontologies. Web Intelligence, IEEE /

WIC / ACM International Conference on, 0, 2006. [cited at p. 7]

[17] R. Raskin and M. Pan. Semantic web for earth and environmental terminology

(sweet). In Semantic Web Technologies for Searching and Retrieving Scientific Data,

2003. [cited at p. 98]

[18] A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,

H. Wang, and C. Wroe. Owl pizzas: Practical experience of teaching owl-dl: Com-

mon errors & common patterns. In EKAW, pages 63–81, 2004. [cited at p. 32, 71]

[19] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N.W. Paton, C.A. Goble,

and A. Brass. Tambis: Transparent access to multiple bioinformatics information

sources. Bioinformatics, 16(2):184–186, 2000. [cited at p. 98]

[20] Heiner Stuckenschmidt. Debugging owl ontologies - a reality check. proceedings of

the 6th international workshop on evaluation of ontology-based tools and the seman-

tic web service challenge (eon-swsc-2008), tenerife, spain, june 1-2, 2008. In EON,

volume 359 of CEUR Workshop Proceedings. CEUR-WS.org, 2008. [cited at p. 8]

[21] Simon Thompson. Haskell The Craft of Functional Programming. Addison-Wesley,

second edition edition, 1999. [cited at p. 33]

[22] L. M. Vilches Blázquez, M. A. B. Poveda, M. C. Suárez-Figueroa, A. Gómez-Pérez,

and A. F. Rodŕıguez Pascual. Towntology & hydrontology: Relationship between

urban and hydrographic features in the geographic information domain. In Ontolo-

gies for Urban Development, pages 73–84. 2007. [cited at p. 98]

[23] Horridge M Rector A Drummond N Seidenberg J. Wang, H. Debugging owl-dl

ontologies: A heuristic approach. In: Proceedings of 4th International Semantic

Web Conference (ISWC), Galway, Ireland, LNCS 3729(745-747), 2005. [cited at p. 5,

75]

Appendices

109

Appendix A

EBNF Production Rules for

OPPL [10]

A.1 Statements

OPPL Statement ::= (<VariableDeclaration>)? (<Query>)? (<Actions>)? ";"

VariableDeclaration ::= <VariableDefinition> ("," <VariableDefinition>)*

Actions ::= "BEGIN" Action ("," Action)+ "END"

VariableDefinition ::= <InputVariableDefinition> | <GeneratedVariableDefinition>

InputVariableDefinition ::= <IDENTIFIER> ":" <variableType> (<VariableTypeScope>)?

GeneratedVariableDefinition ::= <IDENTIFIER> ":" <variableType> "=" <opplFunction>

opplFunction ::= <create> | <creatInteserctions> | <createDisjunction>|

Any Manchester Syntax with variables expression compatible

with the generated variable.

create ::="create("<value>")"

createIntersection ::="createIntersection("<classvalues>")"

createDisjunction ::="createDisjunction("<classvalues>")"

/*The variable name in the production classvalues below must be of type CLASS*/

classvalues ::=<IDENTIFIER>".VALUES"

value ::= a string constant | <generatedValue>

generatedValue ::=<variableAttribute> (<aggregator> <variableAttribute>)*

aggregator ::="+"

variableAttribute ::=<IDENTIFIER>"."<attributeName>

attributeName ::="RENDERING"

VariableTypeScope ::= "[" <direction> <VariableFreeOWLExpression>"]"

direction ::= "subClassOf" | "superClassOf" | subPropertyOf | "superPropertyOf"

| "instanceOf"

111

112 APPENDIX A. EBNF PRODUCTION RULES FOR OPPL [10]

/*Direction production is not context free as it depends on which

variable type the variable is being applied to. The scope, therefore,

is not context free either*/

Constraint ::= <IDENTIFIER> "!=" <OWLExpression>

| <IDENTIFIER> "MATCH" <RegularExpression>

| <IDENTIFIER> "IN" "{" <OWLExpression> ("," <OWLExpression>)* "}"

variableType ::= "CLASS" | "OBJECTPROPERTY | "DATAPROPERTY" | "INDIVIDUAL" | "CONSTANT"

Query ::= "SELECT" ("ASSERTED")? <Axiom> (", ("ASSERTED")?" <Axiom>)*

("WHERE" <Constraint> ("," <Constraint>)*)?

Action ::= "ADD" | "REMOVE" <Axiom>

Axiom ::= An axiom in Manchester OWL Syntax (possibly containing variables)

IDENTIFIER ::= "?"<LETTER> (<LETTER>|<DIGIT>)*

LETTER ::= ["_","a"-"z","A"-"Z", ,"\u00e0"-"\u00f9"]

DIGIT ::= ["0"-"9"]

OWLExpression ::= An OWL entity in Manchester OWL Syntax

(possibly containing variables)

VariableFreeOWLExpression ::= An OWL entity in Manchester OWL Syntax

(without variables)

RegularExpression ::= A Java regular expression for string matching

(applies to the entity rendering)

A.2 Manchester OWL Syntax axioms

SubClassAxiom ::= <ClassDescription> "SubClassOf" <ClassDescription>

EquivalentClassAxiom ::= <ClassDescription> "EquivalentTo" (<ClassDescription>)+

DisjointClassAxiom ::= <ClassDescription> "DisjointWith" (<ClassDescription>)+

FunctionalObjectPropertyAxiom ::= "Functional" <ObjectProperty>

SymmetricObjectPropertyAxiom ::= "Symmetric" <ObjectProperty>

ReflexiveObjectPropertyAxiom ::= "Reflexive" <ObjectProperty>

TransitiveObjectPropertyAxiom ::= "Transitive" <ObjectProperty>

AntiSymmetricObjectPropertyAxiom ::= "AntiSymmetric" <ObjectProperty>

IrreflexiveObjectPropertyAxiom ::= "Irreflexive" <ObjectProperty>

SubObjectPropertyAxiom ::= <ObjectProperty> "SubPropertyOf" <ObjectProperty>

EquivalentObjectPropertyAxiom ::= <ObjectProperty> "EquivalentTo" (<ObjectProperty>)+

DisjointPropertyAxiom ::= <ObjectProperty> "DisjointWith" (<ObjectProperty>)+

InversePropertyAxiom ::= <ObjectProperty> "InverseOf" "("<ObjectProperty>")"

InverseFunctionalPropertyAxiom ::= <ObjectProperty> "InverseFunctional"

"("<ObjectProperty>")"

FunctionalDataPropertyAxiom ::= "Functional" <DataProperty>

ObjectPropertyRangeAxiom ::= <ObjectProperty> "Range" <ClassDescription>

A.3. MANCHESTER OWL SYNTAX WITH VARIABLES ENTITIES 113

ObjectPropertyDomainAxiom ::= <ObjectProperty> "Domain" <ClassDescription>

SubDataPropertyAxiom ::= <DataProperty> "SubPropertyOf" <DataProperty>

EquivalentDataPropertyAxiom ::= <DataProperty> "EquivalentTo" (<DataProperty>)+

DisjointPropertyAxiom ::= <DataProperty> "DisjointWith" (<DataProperty>)+

DataPropertyDomainAxiom ::= <DataProperty> "Domain" <ClassDescription>

DataPropertyRangeAxiom ::= <DataProperty> "Range" <DataRange>

ClassAssertionAxiom ::= <ClassDescription> <Individual>

ObjectPropertyAssertionAxiom ::= <Individual> <ObjectProperty> <Individual>

DataPropertyAssertionAxiom ::= <Individual> <DataProperty> <Constant>

NegativeObjectPropertyAssertionAxiom ::= "not" <Individual> <ObjectProperty>

<Individual>

NegativeDataPropertyAssertionAxiom ::= "not" <Individual> <DataProperty> <Constant>

SameAsAxiom ::= <Individual> "sameAs" (<Individual>)+

DifferentFromAxiom ::= <Individual> "differentFrom" (<Individual>)+

A.3 Manchester OWL Syntax with variables entities

ClassDescription ::= <ClassIntersection>

ClassIntersection ::= <ClassUnion> ("and" <ClassUnion>)*

ClassUnion ::= <NonN-aryDescription> ("or " <NonN-aryDescription>)*

NonN-aryDescription ::= <PrimitiveClass> | <ObjectRestriction>

| <DataRestriction> | "not" <ClassDescription>

| "oneOf {" <Individual> (, <Individual>)* "}"

DataRestriction ::= <DataProperty> "some" <DataRange> | <DataProperty> "only" <DataRange> | <DataProperty> "value" <Constant> | <DataProperty> "min" <NonNegativeInteger> (<DataRange>)? | <DataProperty> "exactly" <NonNegativeInteger> (<DataRange>)? | <DataProperty> "max" <NonNegativeInteger> (<DataRange>)?

ObjectRestriction ::= <ObjectProperty> "some" <ClassDescription>

| <ObjectProperty> "only" <ClassDescription>

| <ObjectProperty> "value" <Individual>

| <ObjectProperty> "min" <NonNegativeInteger> (<ClassDescription>)?

| <ObjectProperty> "exactly" <NonNegativeInteger> (<ClassDescription>)?

| <ObjectProperty> "max" <NonNegativeInteger> (<ClassDescription>)?

PrimitiveClass ::=<ClassName> | <VariableName>

ObjectProperty ::=<ObjectPropertyName> | <VariableName>

DataProperty ::=<DataPropertyName> | <VariableName>

Individual ::=<IndividualName> | <VariableName>

Constant ::=<ConstantLiteral> | <VariableName>

ClassName ::= <LETTER> (<LETTER>|<DIGIT>)*

ObjectPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)*

DataPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)*

IndividualName ::= <LETTER> (<LETTER>|<DIGIT>)*

ConstantLiteral ::= "See the OWL specification"

114 APPENDIX A. EBNF PRODUCTION RULES FOR OPPL [10]

DataRange ::= See Manchester OWL Syntax references above

NonNegativeInteger ::= Any integer greater than or equal to zero

ClassName ::= <LETTER> (<LETTER>|<DIGIT>)*

VariableName ::= "?" <LETTER> (<LETTER>|<DIGIT>)*

LETTER ::= ["_","a"-"z","A"-"Z","\u00e0"-"\u00f9"]

DIGIT ::= ["0"-"9"]

Appendix B

List of Method in OWLFunc

Class

1. boolean isSuccessorOf(OWLOntology ontology,

Set<OWLOntology> importedOntologies, OWLClass c1, OWLClass c2)

This method checks whether c1 v c2 in ontologies. ∗

2. boolean generateAncestorPath(LinkedList<OWLAxiom> curPath,

OWLDataFactory dataFactory, OWLOntology ontology,

Set<OWLOntology> importedOntologies, OWLClass c1, OWLClass c2)

This method generates path (list of axiom) that performs c1 v+ c2 in

ontologies. The path will be returned in curPath. If there is no path, it

returns false.

3. boolean generateAncestorPathToAnonymous(

LinkedList<OWLAxiom> curPath, OWLDataFactory dataFactory,

OWLOntology ontology, Set<OWLOntology> importedOntologies,

OWLClass c1, OWLDescription c2)

This method is almost similar to the previous method, but c2 must be

anonymous class.

4. Set<OWLClass> getAllDescendent(OWLOntology ontology,

Set<OWLOntology> importedOntologies, OWLClass c1)

This method returns all descendent class c in c v+ c1.

5. Set<OWLClass> getIntersectionClass(Set<OWLClass> g1, Set<OWLClass> g2)

This method returns intersection between two set of OWLClass.

∗Ontologies means {ontology} t importedOntologies

115

116 APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

6. Set<OWLDescription> getIntersectionDescription(

Set<OWLDescription> g1, Set<OWLDescription> g2)

This method returns intersection between two set of OWLDescription.

7. Set<OWLEquivalentClassesAxiom> getOWLEquivalentClassesAxioms(

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent class axioms in ontologies.

8. Map<OWLEquivalentClassesAxiom,OWLOntology>

getOWLEquivalentClassesAxiomsAndOntology(

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent class axioms in ontologies including a

mapping of each axiom to its ontology.

9. Set<OWLSubClassAxiom> getOWLSubClassAxioms(OWLOntology curOntology,

Set<OWLOntology> importedOntologies)

This method returns all subclass axioms in ontologies.

10. Set<OWLSubClassAxiom> getSubClassAxiomsForLHS(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all subclass axioms in ontologies whose the subclass

is cls.

11. Set<OWLObjectSubPropertyAxiom> getObjectSubPropertyAxiomsForLHS(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object property axioms in ontologies whose the

sub property is r.

12. Set<OWLObjectSubPropertyAxiom> getObjectSubPropertyAxiomsForRHS(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object property axioms in ontologies whose the

super property is r.

13. Set<OWLObjectPropertyExpression> getObjectSubProperty(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object properties of r in ontologies.

14. Set<OWLObjectPropertyExpression> getObjectPropertyInverse(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

117

This method returns all inverse object properties of r in ontologies.

15. Set<OWLObjectPropertyExpression> getObjectSuperProperty(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all super object properties of r in ontologies.

16. Set<OWLObjectPropertyExpression> getObjectSubPropertyClosure(

OWLOntology ontology,

Set<OWLOntology> importedOntologies, OWLObjectPropertyExpression r)

This method returns all sub object properties of r in ontologies, taking into

account an indirect sub property.

17. Set<OWLDisjointClassesAxiom> getDisjointClassesAxioms(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all disjoint class axioms that contain cls.

18. Set<OWLDescription> getDisjointClasses(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all classes (including anonymous class) that are dis-

joint with cls.

19. Set<OWLEquivalentClassesAxiom> getEquivalentClassesAxioms(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent class axioms that contain cls.

20. Set<OWLEquivalentObjectPropertiesAxiom> getEquivalentPropertyAxioms(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent object property axioms that contain r.

21. Set<OWLEquivalentClassesAxiom> getEquivalentClassesAxioms(OWLClass cls1,

OWLClass cls2,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,

Set<OWLEquivalentClassesAxiom> axiomChecked)

This method returns all equivalent class axioms that perform cls1 ≡+ cls2.

22. Set<OWLDescription> getEquivalentClassClosure(OWLClass cls1,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,

Set<OWLEquivalentClassesAxiom> axiomChecked)

This method returns all classes that are equivalent with cls1 directly or

indirectly (by transitivity of ≡).

118 APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

23. Set<OWLObjectPropertyExpression> getEquivalentPropertyClosure(

OWLObjectPropertyExpression r,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,

Set<OWLEquivalentObjectPropertiesAxiom> axiomChecked)

This method returns all object properties that are equivalent with r directly

or indirectly (by transitivity of ≡).

24. Set<OWLDescription> getEquivalentClassClosureWithAnonymous(

OWLDescription cls1,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,

Set<OWLEquivalentClassesAxiom> axiomChecked)

This method returns all classes (including anonymous class)that are equiv-

alent with cls1 directly or indirectly (by transitivity of ≡).

25. boolean generateEquivalentPath(

LinkedList<OWLEquivalentClassesAxiom> curPath,

OWLClass c1, OWLDescription c2,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,

Set<OWLEquivalentClassesAxiom> axiomChecked)

This method returns all equivalent class axiom that perform c1 ≡+ c2 where

c2 may be an anonymous class.

26. Set<OWLDescription> getSuperClasses(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all super classes of cls in ontologies.

27. Set<OWLDescription> getEquivalentClasses(OWLClass cls,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all classes that are equivalent with cls in ontologies.

28. Set<OWLFunctionalDataPropertyAxiom> getOWLFunctionalDataPropertyAxiom(

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all functional data property axiom in ontologies.

29. Set<OWLFunctionalObjectPropertyAxiom> getOWLFunctionalObjectPropertyAxiom(

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all functional object property axiom in ontologies.

30. boolean contentAxiom(OWLOntology curOntology,

Set<OWLOntology> importedOntologies, OWLAxiom axiom)

This method checks whether ontologies contain axiom.

119

31. LinkedList<OWLAxiom> getDisjointLink(OWLDataFactory dataFactory,

OWLDescription d1, OWLDescription d2,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms that prove disjointness between d1 and d2.

32. LinkedList<OWLAxiom> getDisjointLinkOnUnion(

OWLDataFactory dataFactory, Set<OWLClass> s1, Set<OWLClass> s2,

OWLOntology curOntology, Set<WLOntology> importedOntologies)

This method return all axioms that prove disjointness between d1 and d2
where di is set of operand in union operator.

33. LinkedList<OWLAxiom> getDisjointLinkAmongIntersection(

OWLDataFactory dataFactory, Set<OWLDescription> classOperands,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms proving that there is one disjointness among

classes in classOperands.

34. LinkedList<OWLAxiom> getDisjointLink(

OWLDataFactory dataFactory, OWLClass c1, OWLClass c2,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms that show disjointness between class c1 and

c2.

35. Set<OWLClass> getAllAncestor(OWLOntology ontology,

Set<OWLOntology> importedOntologies, OWLClass c1)

This method returns all classes where each class c in c1 v+ c.

36. Set<OWLDescription> getAllAnonymousAncestor(

OWLOntology ontology, Set<OWLOntology> importedOntologies, OWLClass c1)

This method returns all anonymous classes where each class c in c1 v+ c.

37. LinkedList<OWLAxiom> getFirstAxiomsHavingMinOrExactOrSomeRestriction(

OWLDataFactory dataFactory,

OWLOntology ontology, Set<OWLOntology> importedOntologies,

OWLClass c1, OWLObjectPropertyExpression r)

This method return all axioms that show property r must have at least

a value , normally specified as existential restrictions, (minimum) or exact

cardinality restriction for class c1 with a positive number on the cardinality.

.

38. boolean isConceptExist(OWLClass c1,OWLOntology curOntology)

This method check whether class c1 exists in the curOntology.

120 APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

39. int countFreqConcept(OWLClass c1,

OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return frequency of class c1 used in ontologies.

40. Set<OWLAnnotation> getClassAnnotation(OWLClass cls,

OWLOntology curOntology)

This method return all annotations of class cls.

List of Symbols

and Abbreviations

Abbreviation Description Definition

OWL Ontology Web Language page 5

DL Description Logic page 5

OPPL Ontology Pre-Processor Language page 11

RDF Resource Description Framework page 10

API Application Programming Interface page 11

Jar Java Archive page 83

GUI Graphical User Interface page 88

121

List of Figures

1.1 Screenshot of Protégé OWL Debugger 6

1.2 Screenshot of SWOOP . 7

1.3 Screenshot of RepairTab . 7

2.1 Screenshot of Protégé . 10

2.2 Reasoner in Protégé . 12

2.3 Screenshot of LintRoll . 15

4.1 Indirect Disjointness of C1 and C2 . 25

5.1 Indirect Disjointness over two unions 31

6.1 Transformation process flowchart . 80

6.2 Detection process flowchart . 81

6.3 Execution process flowchart . 81

6.4 Apero as a plug-in in Protégé . 83

6.5 How to access Apero from menu [Tabs] in Protégé 84

6.6 How to access Apero from menu [View] in Protégé 84

6.7 A Java-properties file . 85

6.8 A UML Class Diagram Lint-based Antipattern implementation 87

6.9 A mapping antipattern configuration to the GUI 88

6.10 Before transformation . 90

6.11 An annotation acknowledgment . 90

6.12 After transformation . 90

6.13 Before detection process . 91

6.14 After detection process . 92

6.15 SMALO antipattern . 92

6.16 Execution process 1 . 93

6.17 Execution process 2 . 93

6.18 Description of class Ponor before execution 94

122

LIST OF FIGURES 123

6.19 Description of class Ponor after execution 94

6.20 Debugging Strategy in [4] . 95

6.21 New Debugging Strategy . 96

7.1 New formula representation . 99

7.2 Transformation Detection . 101

7.3 Detection of CS Department on SWOOP 102

7.4 Recommendation on SWOOP . 103

List of Tables

2.1 Mapping of Syntax . 11

2.2 Catalogue of antipattern in [5] . 14

4.1 New catalogue of antipattern . 24

6.1 A group of antipattern category . 77

6.2 A OPPL-based antipattern configuration 78

6.3 A Lint-based antipattern configuration 78

7.1 List of ontologies . 98

7.2 Summary of testing result . 99

7.3 Detail of testing result . 100

7.4 Comparison between Apero and SWOOP 101

124

List of Codes

1 DOC OPPL Script . 27

2 SMALO OPPL Script . 27

3 MIZ OPPL Script . 28

4 DCS OPPL Script . 29

5 Pseudocode for AIO (5.1) . 33

6 Pseudocode for AIO (5.2) . 34

7 Pseudocode for AIO (5.3) . 34

8 Pseudocode for AIO (5.4) . 34

9 Pseudocode for AIO (5.5) . 34

10 Pseudocode for OIL (5.6) . 36

11 Pseudocode for OIL (5.7) . 37

12 Pseudocode for OILWI (5.8) . 38

13 Pseudocode for OILWI (5.9) . 39

14 Pseudocode for UE (5.10) . 40

15 Pseudocode for UE (5.11) . 40

16 Pseudocode for UEWI (5.12) . 42

17 Pseudocode for UEWPI (5.14) . 44

18 Pseudocode for UEWPI (5.15) . 45

19 Pseudocode for UEWPI (5.16) . 45

20 Pseudocode for UEWIP (5.17) . 47

21 Pseudocode for UEWIP (5.18) . 48

22 Pseudocode for VOV (5.19) . 50

23 Pseudocode for VOV (5.20) . 51

24 Pseudocode for EID (5.21) . 53

25 Pseudocode for EID (5.22) . 53

26 Pseudocode for EID (5.22) . 53

27 Pseudocode for EID (5.23) . 54

28 Pseudocode for EAD (5.24) . 55

29 Pseudocode for EAD (5.25) . 55

30 Pseudocode for SID (5.26) . 56

125

126 LIST OF TABLES

31 Pseudocode for SAD (5.28) . 57

32 Pseudocode for MMCaR (5.31) . 59

33 Pseudocode for ECRWIP (5.34) . 61

34 Pseudocode for ECRWIP (5.35) . 62

35 Pseudocode for SOSER (5.36) . 64

36 Pseudocode for SOSER (5.37) . 66

37 Pseudocode for SOE (5.38) . 67

38 Pseudocode for SOE (5.39) . 68

39 Pseudocode for UIE (5.42) . 70

40 Pseudocode for UIE (5.43) . 70

41 Pseudocode for ECR (5.44) . 72

42 Pseudocode for ECR (5.45) . 72

43 Pseudocode for DOS (5.46) . 73

44 Pseudocode for DOS (5.47) . 74

45 File MIZ prefix.txt . 86

46 File MIZ 1.txt . 86

	Contents
	1 Introduction
	2 State of the Art
	2.1 OWL and Protégé
	2.2 OPPL
	2.3 Antipattern
	2.4 LintRoll

	3 Work Objectives
	4 OPPL-Based AntiPatterns
	4.1 Guideline DisjointnessOfComplement (DOC)
	4.2 Guideline SomeMeansAtLeastOne (SMALO)
	4.3 Guideline MinIsZero (MIZ)
	4.4 Guideline DisjointnessofComplementonSubclass (DCS)

	5 Lint-Based AntiPatterns
	5.1 Detectable Logical AntiPatterns (DLAP)
	5.1.1 AntiPattern AndIsOr (AIO)
	5.1.2 AntiPattern OnlynessIsLoneliness (OIL)
	5.1.3 AntiPattern OnlynessIsLonelinessWithInheritance (OILWI)
	5.1.4 AntiPattern UniversalExistence (UE)
	5.1.5 AntiPattern UniversalExistenceWithInheritance (UEWI)
	5.1.6 AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)
	5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)
	5.1.8 AntiPatterns hasValueisOneValue (VOV)
	5.1.9 AntiPattern EquivalenceIsDifference (EID)
	5.1.10 AntiPattern EquivalencesAreDifferences (EAD)
	5.1.11 AntiPattern SubclassIsDifference (SID)
	5.1.12 AntiPattern SubclassesAreDifferences (SAD)
	5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MMCaR)
	5.1.14 AntiPattern Existential&CardinalityRestrictionWithInverseProperty (ECRWIP)
	5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER)

	5.2 Cognitive Logical AntiPatterns (CLAP)
	5.2.1 AntiPattern SynonymOrEquivalence (SOE)
	5.2.2 AntiPattern SumOfSom (SOS)

	5.3 Guidelines
	5.3.1 Guideline UnionInEquivalency(UIE)
	5.3.2 Guideline Existential & Cardinality Restriction(ECR)
	5.3.3 Guideline Distributivity On Subclass (DOS)

	6 Apero Plug-in
	6.1 Analysis
	6.2 Design
	6.2.1 Configuration
	6.2.2 Transformation Process Design
	6.2.3 Detection Process Design
	6.2.4 Execution Process Design

	6.3 Implementation
	6.3.1 Environment
	6.3.2 Antipattern Implementation
	6.3.3 Transformation Process Implementation
	6.3.4 Detection Process Implementation
	6.3.5 Execution Process Implementation

	6.4 Debugging Strategy Based on Antipatterns

	7 Evaluation
	7.1 Evalution Setup
	7.2 Evalution Test Case and Plan
	7.3 Evaluation Result

	8 Conclusion and Future Work
	Bibliography
	A EBNF Production Rules for OPPL GRA2010
	A.1 Statements
	A.2 Manchester OWL Syntax axioms
	A.3 Manchester OWL Syntax with variables entities

	B List of Method in OWLFunc Class
	List of Symbols and Abbreviations
	List of Figures
	List of Tables

