Faculfad de Informatica frB
Universidad Palitécnica de Madrid “ﬁ:”:;__ 5/

European Master In Computational Logic

Master Thesis

An AntiPattern-Based OWL
Ontology Debugging Tool

by

Mohamad Fauzan Tahwil

Supervisor: Prof. Oscar Corcho Garcia
Co-Supervisor: Dr. Catherine Roussey

Madrid, June 2010

As Sunnah : Utlubul ilma minal mahdi ilal lahdi - Seek knowledge from the
cradle to the grave

Contents

Contents i
1 Introduction 5
2 State of the Art 9
2.1 OWL and Protégé 9
2.2 OPPL e 11
2.3 Antipattern 13
24 LintRoll o e 14

3 Work Objectives 19
4 OPPL-Based AntiPatterns 23
4.1 Guideline DisjointnessOfComplement (DOC) 26
4.2 Guideline SomeMeansAtLeastOne (SMALO) 26
4.3 Guideline MinlsZero (MIZ) 28
4.4 Guideline DisjointnessofComplementonSubclass (DCS) 28

5 Lint-Based AntiPatterns 31
5.1 Detectable Logical AntiPatterns (DLAP) 32
5.1.1 AntiPattern AndIsOr (AIO) 32

5.1.2 AntiPattern OnlynessIsLoneliness (OIL) 35

5.1.3 AntiPattern OnlynessIsLonelinessWithInheritance (OILWI) 37

5.1.4 AntiPattern UniversalExistence (UE) 39

5.1.5 AntiPattern UniversalExistenceWithInheritance (UEWI) . 41
5.1.6 AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)

................................. 43
5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)

................................. 45
5.1.8 AntiPatterns hasValueisOneValue (VOV) 48

5.1.9 AntiPattern EquivalencelsDifference (EID) 51

ii CONTENTS

5.1.10 AntiPattern EquivalencesAreDifferences (EAD) 54
5.1.11 AntiPattern SubclassIsDifference (SID) 55
5.1.12 AntiPattern SubclassesAreDifferences (SAD) 56
5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MM-

CaR) . . . 57

5.1.14 AntiPattern Existential&CardinalityRestriction WithInverseProperty
(ECRWIP) 60
5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER) . . 62
5.2 Cognitive Logical AntiPatterns (CLAP) 66
5.2.1 AntiPattern SynonymOrEquivalence (SOE) 66
5.2.2 AntiPattern SumOfSom (SOS) 68
5.3 Guidelineso 69
5.3.1 Guideline UnionInEquivalency(UIE) 69
5.3.2 Guideline Existential & Cardinality Restriction(ECR) . . . 70
5.3.3 Guideline Distributivity On Subclass (DOS) 72
6 Apero Plug-in 75
6.1 Analysis 75
6.2 Design L 77
6.2.1 Configuration Lo 7
6.2.2 Transformation Process Design 79
6.2.3 Detection Process Design 79
6.2.4 Execution Process Design 80
6.3 Implementation L L oo 82
6.3.1 Environment o 0oL 82
6.3.2 Antipattern Implementation L. 83
6.3.3 Transformation Process Implementation 89
6.3.4 Detection Process Implementation 89
6.3.5 Execution Process Implementation 91
6.4 Debugging Strategy Based on Antipatterns 94
7 Evaluation 97
7.1 Evalution Setup 97
7.2 Evalution Test Case and Plan 97
7.3 Evaluation Result oo 98
8 Conclusion and Future Work 105
Bibliography 107
A EBNF Production Rules for OPPL [10] 111
A1 Statements 111

A.2 Manchester OWL Syntax axioms 112

CONTENTS iii

A.3 Manchester OWL Syntax with variables entities 113
B List of Method in OWLFunc Class 115
List of Symbols and Abbreviations 121
List of Figures 122

List of Tables 124

Abstract

Debugging an OWL ontology manually is difficult and a time-consuming task,
even for ontology engineering and knowledge representation experts. Some de-
bugging tools are very dependent on to the reasoners that may take several hours
to detect inconsistencies. Current debugging tools do not provide enough infor-
mation. None of these tools can detect modeling errors and suggest a better
form of expression. By continuing previous research on antipatterns, we want
to make an effort in this thesis to build Apero, a Protégé plug-in that offers an
ontology debugging tool based on the use of antipatterns. Apero is able to detect
inconsistencies without the use of a reasoner, shows possible modeling errors and
suggests an alternative form of expression but more accurate for encoding the
same knowledge.

Acknowledgements

The first thanks goes to my supervisor, Prof. Oscar Corcho Garcia, for all his
support and guidance. He was always ready (even during holiday season, week
ends, and nights) to help me with all my difficulties. I really appreciate his
support in this thesis as well as in practical work.

I would like to express my gratitudes to all my professors in UPM and TUD.
Special thanks go to Prof. Steffen Holldobler for giving me opportunity in this
master program, Prof. Francisco Bueno to support my education in UPM.

I would like to express my thanks to all my friends in UPM and TUD. To
Catherine for always providing me whatever sources I need in order to complete
this work and giving me feedback. To Evgeny, Seif and Milka for sharing fun
time with me in Dresden. Thank you to my flat mates (Luis, Ruben and Sinan)
for being my family here. Also Freddy, Irene and Anton have been keeping me
to speak Indonesian Language and supporting my thesis.

To my friend and lecturer, Prof. Lim Yohanes Stefanus from University of
Indonesia. Thanks for supporting me in the very first place so that I am able to
get scholarship in this master program.

To the people I miss during my master study, my father, mother and sisters,
for giving me big support to my success.

To my beloved wife who always accompanies me from loneliness although she
is be in different place. Her kindness, support and patience make me see the
future more beautiful.

This thesis is supported by Erasmus Mundus scholarship financial grant.

Chapter 1

Introduction

In recent years there has been a considerable amount of interest in the area of
debugging and repair of OWL ontologies. The process of debugging ontology is
as important as debugging program code. They are vital to get rid of faults. In
ontology debugging, the faults are marked as undesirable entailments. In par-
ticular, the entailment that a concept (class) is unsatisfiable is almost always
undesired. Nevertheless, undesirable entailments are not limited to unsatisfiable
classes. Other undesirable entailments may be caused by unintended and conflict-
ing to the modeler’s understanding of the domain, for instance certain subclass
relation between classes. Ontology debugging is the process of finding the causes
of an undesirable entailment, understanding these causes, and modifying the on-
tology so that there is no longer the undesirable entailment [8].

It is a tremendously hard task discovering the cause of errors or faults. DL
(Description logic) reasoners can only supply lists of unsatisfiable classes when
checking satisfiability (consistency). They present no extra explanation about
why a class is unsatisfiable. An unsatisfiable class could be a derived or root
unsatisfiable class. A derived unsatisfiable class is a class whose satisfiability
depends on another class, otherwise it is classified to a root unsatisfiable class.
We have to examine and fix root unsatisfiable classes first. For instance, A is
unsatisfiable class, B C A and C' C dR.A imply B and C as derived unsatisfiable
classes.

Users manually do the process of ontology debugging to find the reason of the
unsatisfiability of the class. However, users do not always have enough experience
with DL. Thus, it will be a hard task for them without adequate supporting
tools. It will be more complicated when the ontology is large and complex. Even
experienced ontology engineers will have difficulty to find the causal error. The
ability to provide this causal error can be a measurement of powerfulness of DL

reasoners [23].

6 CHAPTER 1. INTRODUCTION

Explanation of the cause of unsatisfiability Conditions that cause the unsatisfiability
are highlighted

Explanation:
The unversal restrcidh means tataletainsips alon asToppingmust b o il that s megoss o izaTopng omeer, te extemial restocion means 3]
that there must be at least one relationship to an individual from ChocolateSauce, which is ping,
@ Condition: IceCreamWithChocolateSauce
oot condition
[P Condition: 3 hasTopping ChocolateSauce
Necessary condition on IceCreamMithChocolateSauce
n: Pizza
in of hasTa Topping Chocolatesauce
~PizzaTopping)
v pping)
Condition: ¥ hasTopping PizzaTopping
Negational Normal Form (NNP) o ~(@ hasTopping ~PizzaTopping)
Continue)
Please confirm what you would like to do next. &
X

(O Determine why individuals cannot be members of PizzaTopping and ChocolateSauce

@ Stop debugaing

Explanation

The two classes PizzaTopping and ChocolateSauce are disjoint from each other. (Directly asserted)

X[

Condition: ChocolateSauce

N
N

The debugger leads the user
through the various debugging
steps, suggestion which classes
should be debugged

Figure 1.1: Screenshot of Protégé OWL Debugger

When we are focusing on DL formalization and OWL implementation, there
are several options of ontology debugging tool, that have proven their effectiveness
in different domains, as follows:

e Protégé OWL Debugger

Protégé OWL Debugger [9] is a tool to help people debug OWL-DL on-
tologies. As its name suggests, it is incorporated in Protégé as a plug-in.
It provides conditions that cause a class be unsatisfiable. It also guides
the user through the various debugging steps. Unfortunately, it requires to
start the OWL reasoner (e.g RACER or FaCT++) and classify the ontol-
ogy first. This process will become a time-consuming task if we face a very
large and complex ontology. The Screenshot of this tool is shown with the
Figure 1.1. *

e SWOOP
SWOOP [15] is a standalone tool to create, edit, and debug OWL ontologies.
Swoop uses a DL reasoner (e.g. Pellet) to determine which named concepts
in the ontology are unsatisfiable. Thus, it has the same problem than the

*The source is available at hitp://www.co-ode.org/downloads/owldebugger/

& swoo a7 I =loix|
Fie Wiew Bockmarks Resource Hoider Advanced About

[4 [3 | s v i s ovap corfantologies tambis-full vl =]

| a Ontology Lit] I~ showInnerted [~ Changesiannatatiors (7 Edrable

Onkelogy Irfo | Specias Yakdation |

DL Exprossivity: SHIN H
S == ALCR+

AL - fitribute Logic: Conjunction, Universal Value Restriction, Limited Existential Guantfication

© - Complement (together with AL allows Disjundtian, Full Existential Quantifeation)

R - Role Transitivity

H - Rale Higrarchy =
1 - Role [nverss

M- U lifiad Number Restrictions

| 2ad 21| pcd 1| md 2 | 7o
I ShomImports [~ Gtiames [
- Total Number of Classes: 395 (Defined: 395, Imported: 0)

ass L y
ChosTroo| ucperty Tes| | Total Number of Datatype Properties: 0 (Defined: 0, Imported; 0)
=@ owl:tothing =1|{| rotal Number of Object Properties: 100 (Defined: 100, Imparted: o)
methylation-site Total Number of Annotation Properties: O (Defined: O, Imported: 0)
complement-dna

Total Number of Individuals: 0 (Defined: 0, Imparted: 0)
phospharylation-site 144 unsatisioble classes:
oer: d-attachmen unsatisfiable classes:

dna-binding-site

alkali-matal
gene-par
rigosome-binding-site
small-organic-molecul
protein-structure
calcium-binli

root classes (3)

matal

non-matal
matalloid

g;osnhnbentethem-subst derived unsat. classes (141) parent dependencies
factor
metallaid zcatylation-ste iz, protein-part,
::5 active-site. macromolecul=-nart, protain, site, protsin-part,
ma-part alkali-metal metal, meraliaid
r:;“'"“'““‘w“ I proteinstruchure, pratein serondary-strdture, macromolecular coman
francium L
small-nudsar-rma amidation-site, modification-sita, aratain-nart,
oxidoreductase =]
cows Protégé 3.2beta (file:\D:\Javahjoey_reasoner\mad_cows.ppri, OWL / RDF Files). =10]x]
Ele [Edt Project OWL Code Jools Window Help
DEE “BE wd ¢% oM @ 20 BB B 8 4a» % <épmtégé
(7@ Netoceta | OwiCinsses | M Froperties | @ inchidusls || = Forms | Repai Ortology Teb
Asserted model
| cuass seowsen | R Classes il
For Project @ mad_cows
Select one of the classes for repairing. mad_cow: -
Asserted Hierarchy
EThing One of the following sets of axioms should be removed/modified:
Asiom_1
gy Axiom Confidence value Action
@ nsticat (1) cow s 1 3 part_of sheep) = mad_cow 108 [Remove] [Rewrite]
® nsOgiotte 1(3) cow & yegetarian a1 [Remove] [Rewsite]
:x":::‘ 1(3) vegetarian = anfmal 1 ¥ eats (~ (3 part_of (animal))) 11 V' eats.(~ animal) 173 [Remove] [Rewrite]
s
O nstivegetarian 1(4) sheep = ammal 102 [Remove] [Rewrite]
¥ @ nsocow Display bnpact of Removal | Remove Selected Adom | Reset Al |
O nstimad_cow|
nstbone
ns0bran

Figure 1.3: Screenshot of RepairTab

Protégé OWL Debugger. The Screenshot of this tool is shown with the
Figure 1.2. T

e RepairTab

RepairTab [16] is a Protégé plugin that suggests alternatives to resolve the
identified inconsistencies. It shows those entailments that would be lost if
the recommended solution was applied. However, the current solution is
restricted to remove part from the existing axioms or to replace a class by

one of its super classes. The Figure 1.3 is a screenshot of RepairTab with
Mad Cow ontology as example.

Reviewing the previous research on antipattern [4], we concentrate our study

TThe source is available at http://www.mindswap.org/2005/debugging/

8 CHAPTER 1. INTRODUCTION

on real ontologies that have been developed by domain experts ¥, who are not
necessarily too familiar with DL, and hence can misuse DL constructors and
misunderstand the semantics of some OWL expressions which may bring us to
an unwanted unsatisfiability classes. For instance, HydrOntology is a medium-
sized OWL ontology (165 classes) developed by a domain expert in the area of
Hydrology [3]. The first version of this ontology has a total of 114 unsatisfiable
classes.

To find the reasons for their unsatisfiability, domain experts find it difficult to
understand the information provided by the debugging systems used ([9], [15]) on
root unsatisfiability class. In addition, sometimes during the debugging process,
the generation of justification for unsatisfiability took several hours. This made
these tools hard to use. It confirms the result described in [20]. As a result,
we found out that in several occasions the domain experts were just changing
axioms from the original ontology in a somehow random way. They even change
the intended meaning of the definitions instead of correcting errors in their for-
malization.

By using this ontology and several other real ontologies, in this thesis we
identify common unsatisfiability-leading patterns used by the domain experts
when implementing OWL ontologies. There will be also a solution that can
be used by domain experts to debug their ontology. At the end, we provide
some hints on how to organize the iterative ontology debugging process using a
combination of debugging tools and patterns.

This thesis is organized as follows:

1. Chapter 2 presents state of the art and background theory of related tech-
nologies we use in our work.

2. Chapter 3 presents the objectivity of our work, including the assumption
and limitations.

3. Chapter 4 presents OPPL-based antipattern.
4. Chapter 5 presents Lint-based antipattern.

5. Chapter 6 presents Apero Plugin, including its analysis, design and imple-
mentation process.

6. Chapter 7 presents the evaluation results of Apero plugin.

7. Chapter 8 presents the conclusions on our work and some future works.

fDomain expert is a person with special knowledge or skills in a particular area

Chapter 2

State of the Art

This chapter discusses the latest technology that we use or that we refer to in
this thesis.

2.1 OWL and Protégé

OWL is the most recent development in standard ontology languages, endorsed by
the World Wide Web Consortium (W3C) to promote the Semantic Web vision.
”An OWL ontology may include descriptions of classes, properties and their
instances. Given such an ontology, the OWL formal semantics specifies how to
derive its logical consequences, i.e. facts not literally present in the ontology, but
entailed by the semantics. These entailments may be based on a single document
or multiple distributed documents that have been combined using defined OWL
mechanisms” [13].

OWL has three sub languages as follows [13]:

1. OWL Lite.
OWTL Lite has a classification hierarchy and simple constraint features. For
instance, cardinality constraints only allow cardinality values of 0 or 1.

2. OWL DL.
OWL DL has maximum expressiveness without losing computational com-
pleteness and decidability of reasoning systems. Completeness means that
all entailments are guaranteed to be computed, whereas decidability means
that all computations will finish in finite time. OWL DL is so named due
to its correspondence with description logics, a field of research that has
studied a particular decidable fragment of first order logic.

9

10 CHAPTER 2. STATE OF THE ART

B 0ntology1175677975.0ml (http:/ /www.owl-ontologies.com,/Or iy \debughhyds =loixi

Fils Edt Ontologies Reasoner Tools Refactor Tabs View ‘Window Help

< > | [@ ontology1175677975 0wl ttiwvw ow-oroingies. comontology 1175677 975,011 ~| o |

(' ctive Ontology | Entties | Classes | Object Properties | Data Properties. | Individusls | Apero || opPL

Mtrics: =t

Class count 159
Oblest property court a7
Deta property court 64
Ingivicusl cout a
DL expressivity SHINED)
Clags axioms
SubClass axiorms count a1
Equivalsrt clesses axioms sourt 36
Disjoirt lass s axioms count 264
GGl cout 0
Hidden GOl Court 33
Cujct property axioms
Sub object property axionrs court 13
Eqivalert object properties axioms court 0 L
Inverse ohject properties axioms count 115
Disjoirt object praperties axioms court 0
eneral axioms | RDF/AML Rendering | OWLGKML Rendering | OWL Functional Syntax Rendering T —— o
Inverse functional object property axioms court 0
Transiive object property axioms court h
Symmetric object property axioms court 0
Arti-symmetric: object property axioms count o
Reflexive object property exioms court 0
Intefiexive object property axioms count o
Objiect property domain axioms count 0
Objiect property range axioms court o
Objiect property chain subroperty axioms court 0

Figure 2.1: Screenshot of Protégé

3. OWL Full.
OWL Full has maximum expressiveness and the syntactic freedom of RDF
with no computational guarantees. For instance, a class can be treated
simultaneously as a collection of individuals and as an individual in its own
right.

Protégé is a free and open-source software that provides a user community
with a suite of tools to construct domain models and knowledge-based applica-
tions with ontologies. At its core, Protégé implements a rich set of knowledge-
modeling structures and actions that support the creation, visualization, and ma-
nipulation of ontologies in various representation formats [11]. The GUI (Graph-
ical User Interface) of Protégé is shown on the Figure 2.1.

There are several features that distinguish Protégé from other ontology editing
tools. Protégé has all of the following features that cannot be found on other tools:

e Intuitive and user-friendly GUI.

e Extensible plug-in architecture. It is easy to extend Protégé with plug-ins
designed for our domain and task.

Protégé supports OWL. It also has an extension (Protégé OWL editor) that
enables us to load and save ontologies and execute description logic classifiers.
Protégé can also be extended by way of a plug-in architecture and a Java-based
Application Programming Interface (API) for building knowledge-based tools and

applications.

2.2. OPPL 11

Axiom is a definition that associates class and property identifiers with specifi-
cations of their characteristics, and to give other logical information about classes
and properties [13]. Example of an axiom is ” AnimalLover equivalentTo Person
and hasPet min 3”

Syntax of OWL in Protégé uses Manchester OWL syntax. We will find the
use of OWL syntax itself in the owl file. Because of compactness, we will use
DL symbol as a tool to represent an OWL expression. The table 2.1 shows the
most common constructor in OWL, DL and Manchester OWL syntax *. Protégé
provides OWL API that enables developer to access all axioms and manipulate
them.

Table 2.1: Mapping of Syntax

Constructor OWL DL Manchester OWL | Example

Symbol Syntax Keyword
Negation complementO f -C not not Child
Intersection intersectionO f Cin..ncy, | and Doctor and Female
Union unionO f Ciu..ucy | or Male and Female
Universal Restriction | allValuesFrom VR.C only hasSibling only woman
Existential Restriction | someValuesFrom | 3R.C some hasChild some man
Maximum Cardinality | maxCardinality <nR.C max hasChild maz 3
Exact Cardinality exactCardinality | =nR.C exactly hasChild exatcly 3
Minimum Cardinality | minCardinality >nR.C min hasChild min 3
Spesific Value hasV alue JRx value hasPlayer value zidane
Subclass subClassO f C C subClassO f Male subClassOf Human
Equivalence equivalenClass Cy =Cy equivalentT o AnimalLover equivalentTo

Person and hasPet min 3

Disjointness disjointWith CiNCy C L | disjointWith Dog disjointWith Cat

Reasoner is a piece of software that is able to detect inconsistencies, find
subclasses and detect trivially satisfiable class. Depending on the expressiveness
of OWL (OWL Lite or DL), a reasoner is either OWL Lite reasoner or DL-
reasoner. DL-reasoner also covers the Lite one. We exclude reasoner for OWL
Full in this thesis because of decidability reasons.

Protégé provides facility to use reasoner. Reasoner can be access from menu
[Reasoner >Classify] if a reasoner has been selected or [Reasoner >Reasoner-
Name] (see the Figure 2.2). After reasoning process is complete, Protégé will
mark every unsatisfiable class with red color.

2.2 OPPL

OPPL (Ontology Pre-Processor Language) is an abstract formalism that allows
manipulating OWL ontologies [14]. The version of the Ontology Pre-Processor
Language (OPPL) described here is the successor of the initial effort presented
in [7]. OPPL provides a plug-in for Protégé and API (Application Programming

*Full list available in reference specs and in the Quick Reference Guide.
(see http://www.w3.orq/2007/OWL/refcard)

12 CHAPTER 2. STATE OF THE ART

science.owl {http:,/ iwww.mindswap.org/entolagies/computerscience.owl) - [D: ontologyt debug'\computerseience_man.o =1 _iofxi

Fils Edt Ontologies | Reasoner Tools Refactor Tabs View ‘Window Help

D T i L o) AL J

Active Ortology | Erite © THCTH

Hone

erties || Data Froperties

Pelet

v @ Thing
@cCourse
@CS_Course
- @EE_Course
@ Department
¥-@CS_Department
©Al_Dept
& EE_Department
®Lipbrary
~@cs_Library
W@EE_Library
- @ Person
v @ Faculty
v @ TeachingFaculty
©AssistantProfessor Superclasses
V- Lecturer
® LecturerTakingdGourses Infeired ananymous superslasses
v S Professor
©ProfessorinHCIorAl
v--@ Student
v-@cs_Student
@ pIStudent Disjoint slasses
@cs_StudentTakingCourses

- @HCIStudent
@ PhoneBook
O FacultyPhoneBook
@ UniversityPhoneBook
- @ ResearchArea
@ schedule

Figure 2.2: Reasoner in Protégé

Interface). As a plug-in, users can build and run OPPL statements. Meanwhile,
we can use the API of OPPL to run OPPL statements from our own application.
A generic OPPL statement will look as follows:

SELECT Axiom,....,Axiom
BEGIN
ADD | REMOVE Axiom

ADD | REMOVE Axiom
END

An OPPL statement is decomposable in the following sections:

1. Variable definition (before SELECT)

2. Selection (between SELECT and BEGIN)
3. Actions (between BEGIN and END)

The grammar of an OPPL statement is shown at the Appendix A. Vari-
ables can have the following types: CLASS, OBJECTPROPERTY, DATAPROP-
ERTY, INDIVIDUAL, and CONSTANT. Each variable type covers a possible
category of entities in the OWL specification. An entity here is a named object
or a constant. Therefore, an anonymous class description is not an acceptable

2.3. ANTIPATTERN 13

substitution for any variable type, including CLASS. This limitation has impor-
tant bearings on the possibility of building complete algorithms to execute an
arbitrary query in OPPL.

The following script is an example of OPPL statement:

7c1:CLASS, 7c2:CLASS

SELECT
?cl subClassOf not ?7c2

WHERE ?7cl != 7c2

BEGIN
remove 7cl subClassOf not 7c2,
add 7cl disjointWith 7c2

END;

2.3 Antipattern

We define antipatterns as patterns that appear obvious but are ineffective or far
from optional in practice, representing worst practice about how to structure and
build software [5]. We have also identified a set of patterns that are commonly
used by domain experts in their DL-formalization and OWL implementations,
and that normally result in unsatisfiable classes or modeling errors. Antipat-
terns come from a misuse and misunderstanding of DL expressions by ontology
developers. We categorize them into three groups:

e Detectable Logical Antipatterns (DLAP). They represent errors that DL-
reasoners and debugging tools normally detect.

e Cognitive Logical Antipatterns (CLAP). They represent possible modeling
errors that may be due to a misunderstanding of the logical consequences
of the used expression.

e Guidelines (G). They represent complex expressions used in an ontology
component definition that are correct from the logical and cognitive points
of view, but for which the ontology developer could have used other simpler
alternatives or more accurate ones for encoding the same knowledge.

An antipattern is constructed by a detection pattern and some recommenda-
tions to repair the pattern. To illustrate the pattern, we use DL symbols that have
the most compact form. We define formula here in this thesis as an expression
that is formed by DL symbols and terms in the ontology.

The following table is the catalogue of antipatterns that has been collected in
[5] (without their formalization of detection and recommendation):

14 CHAPTER 2. STATE OF THE ART

Table 2.2: Catalogue of antipattern in [5]

No | Antipattern | Description Category
1 AIO AndIsOr DLAP
2 OIL OnlynesslIsLoneliness DLAP
3 UE UniversalExistence DLAP
4 UEWIP UniversalExistenceWithInverseProperty | DLAP
5 EID EquivalenceisDifference DLAP
6 SOE SynonymOrEquivalence CLAP
7 DOC DisjointnessOfComplement G

8 DCC Domain& CardinalityConstraints G

9 DOC GroupAxioms G

10 | DOC MinlsZero G

2.4 LintRoll

Lint in software means a program that is able to detect suspicious code that
leads to unexpected behavior or bugs [12]. LintRoll is the name of plug-in built
for Protégé that implements concept lint above. Therefore its main aim is to
provide facilities to highlight pitfalls or antipatterns in one’s ontologies. Lint
here is a pattern that can be built from either an OPPL statement or Lint-JAR.
A Lint-JAR is a lint implementation in Java Archive that we or some third party
created.

The connection OPPL with Lint detection is quite natural. Users can now
declare what sort of axioms combinations are Lint and the OPPL engine will
individuate such situations in the target ontologies, when present. Furthermore,
users can now specify actions to undertake in case Lint is detected.

An OPPL Lint specification is made of the following components:

1. Name. A name must use English alphabet letters plus ”—” and ”_”
2. OPPL Script (see the OPPL Grammar on A)

3. Return Clause: "RETURN?” followed by a valid variable name defined in
the OPPL Script earlier.

4. Description: A natural language description of the Lint

Below there is an example of an OPPL Lint check already available in the
Protégé 4 plug-in:

Transitive property lint;
?x:0BJECTPROPERTY, 7y:0BJECTPROPERTY

"The source of LintRoll is available at
http://www.cs.man.ac.uk/ iannonel/lintRoll/downloads. html

2.4. LINTROLL 15

! Active Ontology ~ Entities Classes Object Properties Data Properties

Lint Roll:

Lint Report

.
v Transitive property lintf{1}
v @lintExamples.owl (http:/ /www.co-ode.org/ontologies/lintExamples.owl)
=q

Lint Description Explanation

Figure 2.3: Screenshot of LintRoll

SELECT 7y subProperty0f 7x, Transitive: 7y, Transitive: 7x WHERE 7x!= 7y
BEGIN

REMOVE Transitive: 7y

END;

RETURN ?y;

Lint that corrects the undesirable situation in which a transitive
object property is sub-property of another transitive object property

Users can add their own OPPL Lint checks. The OPPL Lint will be stored
in the active ontology and will be kept there so that it will be available during
its editing.

In order to create your own Lint-JAR, we have to implement Manchester
OWL Lint Framework. There are four components that we must implement as
follows:

1. Lint Interface

CHAPTER 2. STATE OF THE ART

This is the main component in the framework. When developing a lint one
must implement the following methods:

e detected() - In this method goes the actual code for verifying whether
the situation the Lint instance has to detect occurs or not. Developers
are supposed to return an implementation of LintReport containing
the result of the detection process.

e getDescription() - This method should return a String containing a
natural language description of the situation that the Lint detects

e getName(), set Name() - These are mere access methods for the name
of the Lint used for display purposes

2. Lint Pattern Interface
A LintPattern is an interface that stands for a generic pattern matched
across a set of OWLOntology instances. We need to implement method
matches(). The implementation of this method that should an instance im-
plementing the PatternReport interface containing the Set of OW LObject
which are matching this particular pattern.

3. Report (LintReport & PatternReport) interfaces
Both LintReport and PatternReport are interfaces containing the results of
matching respectively a Lint or a LintPattern implementations. A developer
needs to implement the following methods for both of them:

e getAf fectedOntologies() - It returns the ontologies affected (in which
there are OWLObject instances successfully matched) by the Lint
(LintPattern).

o getAf fectedOW LObjects() - Given an instance of OWLOntology this
method should return the Set of OWLObject instances affected by
(successfully matching) the Lint (LintPattern) that generated this im-
plementation of this Report.

o isAf fected(OW LOntology) should return true if the input OWLOn-
tology instance is affected by (contains at least an OWLObject in-
stance successfully matching) the Lint (LintPattern) that generated
this report.

o getLint()(getLintPattern()) - Should return the Lint (LintPattern)
that generated this Report

4. PatternBasedLint Interface This interface abstracts over the kind of Lint
implemented as a chain of LintPattern instances. The suggested semantics
is that a PatternBasedLint is detected when all its LintPatterns success-
fully match a common subset of OWLODbject instances. In addition to

2.4. LINTROLL 17

those already described in Lint interface, a PatternBasedLint implementa-
tion should implements the getPatterns() method, which returns the Set of
LintPattern instances this Lint is built upon.

Chapter 3

Work Objectives

This chapter discusses the work objectives of the thesis. It observes approaches
to overcome problems that occur in the previous chapter. We present some
hypotheses that lead us to assumptions and limitations.

From the discussion of chapter Introduction and State of the art, we define
objective of this thesis as follows:

e to enrich the catalogue of antipattern by discovering new antipatterns.
The first version of the catalogue as displayed on Table 6.3 contains only
10 antipatterns and has proposed a categorization of them. In this thesis
we will perform a research to find new antipatterns.

A finding technique that we use is a manual ontology debugging in which
we expect to find some new antipatterns. The debugged ontology usually
has some inconsistent classes after we classify with a reasoner. We apply
the recommended action from the existing catalogue, and then we search
the root cause of the rest of inconsistent classes.

Once found, then we formalize it as detection of antipattern. The next step,
we propose some actions to recover the problem and confirm them to the
domain experts on what they really want. Later on, we formalize them as
recommendation of antipattern.

As we discussed, to debug ontology manually can be very hard even for
experts. Discovering an antipattern in a complex ontology may be diffi-
cult. But this finding will help a lot to solve the same problem in different
ontologies.

e to extend a formula representation of antipattern, so that a formula can
have better representation of every single antipattern that is closer to its
real data in an ontology.

19

20

CHAPTER 3. WORK OBJECTIVES

We introduce new symbols * (star) and + (plus) in formulating antipatterns
to complete DL-symbols on the current representation. These new symbols
will explain every antipattern clearly. These are close to regular expressions,
because these describe a search pattern too.

e to propose classification of antipattern according to its implementation.
Aforementioned before, LintRoll is capable of detecting suspicious pattern
that very often leads to unexpected behavior or bug. A pattern in LintRoll
could be implemented in OPPL and Manchester OWL Lint Framework.
Furthermore, as an antipattern itself is obviously a pattern as well, we
want to classify an antipattern to either OPPL-based or any other imple-
mentation. We also want to make this new implementation be simpler than
the one that Manchester OWL Lint Framework offers.

e to suggest transformation rule of axioms as additional feature.
In order to help finding antipattern, we present an alternative way as a
transformation rule to convert an axiom to another axiom with expectation
that antipattern could be found. Indeed, this transformation will change
the ontology, but as a trade of, we found an antipattern. The final decision
must be returned to the ontology developer about whether his ontology
modeling is correct or not.

e to build a plug-in as antipattern debugging tool.
This debugging tool will solve time consumption issue and reduce complex-
ity in ontology debugging. We expect that it will offer a clear direction to
ontology developers.

e to compare the plug-in with another debugging tool.
We use SWOOP as debugging tool comparator. We expect that this com-
parison will be able to identify pros and cons of the plug-in.

e to suggest a debugging strategy based on antipatterns.
When debugging an ontology, ontology developers do some consecutive de-
bugging actions until they find the ontology free of antipatterns. They
select to focus on a certain antipattern, after that they go to another an-
tipattern and so on. We will see if this is possible to perform a strategy of
debugging.

Our hypotheses are:

e We are able to implement any antipatterns from the easiest way (OPPL)
to the most difficult way (Lint), regardless of the degree of complexity.

e The developed plug-in can support ontology developers to debug an ontol-
ogy effectively and efficiently.

21

Our assumptions are:

The OPPL API works well, so it can fully support all functionality on the
plug-in.

Validation of a recommendation that is given by the plug-in must be done
manually, so that participation of domain experts is needed, thus we assume
that every taken action is valid.

OWL API that we use is built-in of Protégé. Users must take into account
the version of Protégé (at least its OWL API) is matched with what we use
in our development.

Our limitations are:

Research on antipattern is not stopped at this thesis. New antipatterns
may be found in the future.

We present a formula of antipattern on the plug-in but it will not affect the
result of antipattern finding.

Naming of an antipattern from a version of catalogue to the newer one could
be changed. We cannot control if users want to change antipattern name
from the original distribution of plug-in. This way, we will not talk about

naming convention for antipattern.

At times, an axiom transformation is needed. Since it is outside antipattern
concept, we only implement one transformation rule.

Chapter 4

OPPL-Based AntiPatterns

Debugging ontology manually has yielded some discovery of new antipatterns.
They will complete the old catalogue and the Table 4.1 shows our new catalogue
of antipatterns.

OPPL and Lint-Jar are able to implement all antipatterns in the Table 4.1
but OPPL has some limitations. Following are some reasons why an antipattern
could not be implemented by OPPL:

e Transitivity on subclass (C) and equivalence (=) relation

e Number of operands on the union (L) and intersection (M) could be arbi-
trary

e Special actions such as counting frequency of concepts used and removing
a class

We cannot describe the transitivity on subclass and equivalence relation with
OPPL. Some antipatterns use transitivity. For instance, when we are checking
on the disjointness of two classes, we have to take into account the transitivity.
There are two types of disjointness namely direct and indirect disjointness. The
direct disjointness means there is a disjoint axiom that declares disjointness of
two classes. For instance in HydrOntology, we will find the following axioms:

e Disj(Aguas_Continentales, Aguas_Marinas);*
e Disj(Aguas_Subterrineas, Aguas_Super ficiales);

e Disj(Afluente, Glaciar);

*In Protégé, it means Aguas_Continentales disjointWith Aguas_Marinas.

23

24

CHAPTER 4. OPPL-BASED ANTIPATTERNS

No | Antipattern | Description Category
1| AIO AndIsOr DLAP
2 | OIL OnlynesslIsLoneliness DLAP
3 | OILWI OnlynesslIsLonelinessWithInheritance DLAP
4 | UE UniversalExistence DLAP
5 | UEWI UniversalExistenceWithInheritance DLAP
6 | UEWPI UniversalExistenceWithPropertylnheritance DLAP
7 | UEWIP UniversalExistenceWithInverseProperty DLAP
8 | VOV hasValueisOneValue DLAP
9 | EID EquivalencelsDifference DLAP

10 | EAD EquivalenceAreDifferences DLAP
11 | SID SubclassIsDifference DLAP
12 | SAD SubclassAreDifferences DLAP
13 | MMCAR MinimalMaximalCardinalityRestriction DLAP
14 | ECRWIP Existential&CardinalityRestrictionWithInverseProperty | DLAP
15 | SOSER SumOfSomwithExactRestriction DLAP
16 | SOE SynonymOrEquivalence CLAP
17 | SOS SumOfSom CLAP
18 | DOC DisjointnessOfComplement G
19 | UIE UnionInEquivalency G
20 | ECR Existential& CardinalityRestriction G
21 | SMALO SomeMeansAtLeastOne G
22 | MIZ MinlsZero G
23 | DOS DistributivityOnSubclass G
24 | DCS DisjointnessOfComplementonSubclass G

Table 4.1: New catalogue of antipattern

The indirect disjointness between two classes is not explicitly mentioned by a

disjoint axiom. It requires looking further on their superclass that possibly have

a direct disjointness. On the other hand, we could formalize it as follows:

C,CF

C3; C2 £ Cy; Disj(Cs, Cy); = Disj(Cr, Ca); T

We use pattern C7; T C3 to describe that there is at least one subclass

relation involving either C; or C3. For example, (1) C7 C C11;C11 E Cs; and

(2) C; C (C2;C12 = C5; belong to pattern Cy Tt Cs.

Meanwhile, we use

pattern Co C* (4 to express that subclass relation could be absent. It also could

represent Co and Cy are the same class. Examples for this pattern: (1) Cy = Cy;,
(2) CQ = 021; 021 = 04 and (3) Cg = 021; 021 E 04.
By Venn Diagram Figure 4.1, it is obvious to prove the correctness of the

disjointness between two classes if it is classified to the indirect disjointness.

"Disj(C3,C4) is a direct disjointness

25

Figure 4.1: Indirect Disjointness of C; and Cy

Following is an example of the indirect disjointness:
e Disj(Aguas_Super ficiales, Aguas_Marinas), because:

— Aguas_Super ficiales C Aguas_Continentales;t

— Disj(Aguas_Continentales, Aguas_Marinas);

Sometimes, a class is unsatisfiable because of an axiom that yields the in-
consistency originated from the ancestor of that class. This ancestor relation-
ship also represents the transitivity on subClassOf(C) and equivalentTo(=) re-
lation. For instance in Computer Science Ontology, following axioms cause
LecturerTakingdCourses be unsatisfiable:

o LecturerTakingdCourses C = 4 takeCourse. T
e TeachingFaculty C < 3 takeCourse. T

o LecturerTaking4Courses C Lecturer

o Lecturer C TeachingFaculty

OPPL could not provide a way in general to extract all axioms like on the
example above. We also cannot express the operand of the union (U) and inter-
section (M) with OPPL, because the number of operands is arbitrary and could
be any number. There is no way to create a general script that enables us to
inquiry from an ontology.

The current version of OPPL only supports actions for adding and removing
an axiom. How to remove a class is a thing that OPPL does not provide. On
all antipatterns in category DLAP and CLAP, we will find usability of pattern
transitivity, union, intersection and removing a class. Clearly according to some
of the aforementioned facts, OPPL cannot support all antipatterns in category
DLAP and CLAP.

On each OPPL-based antipattern below, we provide a script of OPPL to show
how an OPPL-based antipattern implemented. An OPPL script consists of three

In Protégé, it means Aguas_Super ficiales subClassOf Aguas_Continentales.

26 CHAPTER 4. OPPL-BASED ANTIPATTERNS

parts: variable declaration, query and action§[14]. An antipattern can have more
than one recommendation. A recommendation will yield the action part on a
script. In this case, there is more than one action part of OPPL. Thus, we split
the script into as many as number of actions that each script only has different
on the action part.

4.1 Guideline DisjointnessOfComplement (DOC)

C1 = not Cy; (4.1)

The ontology developer may want to say that C; and Cy cannot share in-
stances, instead of defining C; as the logical negation of Cy. Hence it could
be more appropriate to state that C'y and Cy are disjoint. The following is an
example of this antipattern in HydrOntology:

e Laguna_Salada = not Aguas_Dulces
e Salt_Lagoon = not Fresh_Water
We propose:

C1/fipt C2;= Disj(Ch, Ca); (4.2)

After applying the above recommendation, corrections to be applied are as
follows:

e Disj(Laguna_Salada, Aguas_Dulces);
e Disj(Salt_Lagoon, Fresh W ater);

The recommendation 4.2 yields a OPPL Script implementation for this an-
tipattern which is displayed on the code 1.

4.2 Guideline SomeMeansAtLeastOne (SMALO)

Cl C HR.CQ;Cl C (2 1R.T); (4.3)

The cardinality restriction is superfluous, because if there is an existential
restriction that means that the cardinality restriction using the same property is
at least equal to 1. The ontology developer had created the axiom C; C (> 1R.T)
first, to say that C; should be defined by the R property. Next, he specialized
his definition and forgot to remove the first restriction. In HydrOntology, this
antipattern appears twice.

§Grammar of the OPPL script is available online at
http://oppl2.sourceforge.net/grammar. html.

4.2. GUIDELINE SOMEMEANSATLEASTONE (SMALO) 27

?c1:CLASS, 7c2:CLASS

SELECT
?cl equivalentTo not 7c2

WHERE 7cl != 7c2

BEGIN
remove ?7cl equivalentTo not ?c2,
add 7cl disjointWith 7c2

END;

Code 1: DOC OPPL Script

e Estero T Jestd,roxima.Desembocadura; Estero T (> 1 estdpmxima.—l—);
e Rambla C Jes_originado.Torrente; Rambla T (> 1 es_originado.T);

We recommend to remove the superfluous axiom.

Cr C 3R-Cos Gy T (44)

After applying the recommendation to the above examples, correction will be
becoming as follows:

e Estero C Jdesta,roxima.Desembocaduras
e Rambla C des_originado.Torrente;

According to the recommendation above, Code 2 is a script of OPPL implemen-

tation for this antipattern.

?c1:CLASS, 7c2:CLASS,
?r:0BJECTPROPERTY
Select
7?cl subClassOf 7r some 7c2,
?7cl subClassOf ?r min 1 Thing
Where 7cl != 7c2
begin
remove 7cl subClassOf ?r min 1 Thing

end;

Code 2: SMALO OPPL Script

28 CHAPTER 4. OPPL-BASED ANTIPATTERNS

4.3 Guideline MinlsZero (MIZ)

C, C (> 0R.T); (4.5)

The ontology developer wants to say that C; can be the domain of the R
property. This restriction has no impact on the logical model being defined and
can be removed. This antipattern appeared once in the HydrOntology debugging
process.

e Laguna_Salada C (> 0 es_alimentada.T);

Hence, we propose to remove the axiom.

GH N T (4.6)

According to the recommendation above, a script of OPPL implementation
for this antipattern will be like Code 3.

?7c1:CLASS,
?r :0BJECTPROPERTY
Select
7cl subClassOf ?r min O Thing
Where ?cl != Thing
begin
remove 7cl subClass0f ?r min O Thing
end;

Code 3: MIZ OPPL Script

4.4 Guideline DisjointnessofComplementonSubclass (DCS)

C1 C not Cy; (4.7)

The ontology developer may want to say that C; and Cy cannot share in-
stances, instead of defining C; as subclass of the logical negation of Cy. Conver-
sion the current axiom into a disjoint axiom is absolutely allowed since it does
not change the semantic. Hence it could be more appropriate to state that Cy
and Cy are disjoint. The following are axioms discovered as this antipattern in
HydrOntology:

e Laguna_Salada T not Aguas_Dulces

4.4. GUIDELINE DISJOINTNESSOFCOMPLEMENTONSUBCLASS (DCS) 29

e Agua_Marinas E not Aguas_Dulces
o Albufera T not Aguas_Dulces

We propose to change the axiom into a disjointness axiom because of the equiv-

alency.
Ciig//fipt C2; = Disj(Ch, Ca); (4.8)

The examples above after correction will changed to:
e Disj(Laguna_Salada, Aguas_Dulces);

e Disj(Agua_Marinas, Aguas_Dulces);

e Disj(Albufera, Aguas_Dulces);

A OPPL script to implement this antipattern should be like code 4.

?c1:CLASS, 7c2:CLASS

SELECT
?cl subClass0Of not 7c2

WHERE ?cl != 7c2

BEGIN
remove 7cl subClassOf not ?c2,
add ?cl disjointWith ?7c2

END;

Code 4: DCS OPPL Script

Chapter 5

Lint-Based AntiPatterns

Lint-Based antiPatterns are a collection of antipatterns that could not be imple-
mented by OPPL. Since, we have Java implementation inside of Lint, Lint is more
powerful than OPPL. It can handle a complex antipattern that requires a spe-
cific query (detection) and action. Nevertheless, Lint is not easier to implement
compared to OPPL.

The idea of Lint comes from the implementation of the Lint-Jar in LintRoll
plug-in on Protégé. We simplify the use of the Lint-Jar and come up with an
implementation which covers every function needed to support an antipattern.
We also think about reusability. Probably, two antipatterns have the same action
part. Thus, one implementation could be used for two antipatterns.

Some antipatterns may contain a disjoint axiom. Lint is able to detect either
direct or indirect disjointness between two classes. Furthermore, Lint also can
detect disjointness over two unions as long as all components in each union are a
class. The Figure 5.1 illustrates the disjointness over two unions. C and Cs are
not necessarily disjoint, neither are C3, C4 and Cs.

If we find an axiom Disj(Cy,Cs), notice that this does not mean that the
ontology developer has explicitly expressed that C; and C are disjoint, but that
these two concepts are determined as disjoint from each other by a reasoner

Figure 5.1: Indirect Disjointness over two unions

31

32 CHAPTER 5. LINT-BASED ANTIPATTERNS

(Facts++, Pellet, etc). We use this notation as a shorthand for C; MCy C L

In order to present how Lint implements an antipattern, we provide a pseu-
docode [6] for helping us to understand how an antipattern is implemented.
Pseudocode is an artificial and informal language that helps programmers de-
velop algorithms. Pseudocode is a ”text-based” detail (algorithmic) design tool.
Fach antipattern consists of two parts, namely detection and action. Detection
and action have their own pseudocode. Since an antipattern may have several
detection pattern and different actions, the pseudocode for the antipattern could
be more than two. A detection process will return pairs of lists of axioms and
lists of parameters for action process, while an action process will return lists of
actions where the user will choose the most appropriate one.

5.1 Detectable Logical AntiPatterns (DLAP)

5.1.1 AntiPattern AndIsOr (AIO)

i C EIR(CQl ..M an); DiSj(CQi, ng); (51)

Ci C (Cgl M...1 C2n>§ D'iSj(CQz‘, ng); (5.2)

This is a common modeling error that appears due to the fact that in com-
mon linguistic usage, "and” and ”or” do not correspond consistently to logical

conjunction and disjunction respectively [18]. For example, "I like cake with milk
and chocolate” is ambiguous. Does the cake contain?

e Some chocolate plus some milk? Cake C Jcontain.ChocolateMNIcontain.Milk
e Chocolate-flavoured milk? Cake T Jcontain.(Chocolate M Milk)
e Some chocolate or some milk? Cake C Jeontain.(Chocolate LI Milk)

Notice that the second version of the AIO antipattern 5.1 is contained in the
first one with an anonymous class. In the original version of HydrOntology this
antipattern appeared twice. The following is one instance of this antipattern :*

e Cano C Jcomunica.(Albufera ™ Mar M Marisma);

In order to solve this antipattern we propose replacing the logical conjunction by
the logical disjunction, or by the conjunction of two existential restrictions.

/B IR TV T S } L O CIRCnU..UCL): (5.3)
DiSj(CQi, ng); N 7
= (1 C (3R021) ... 1 <3R02n)7 (54)

*For better readability, we do not specify in these examples that the used classes are disjoint

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 33

O LY TN D Dis(Cai, Coj); = CrECorU... U O (5.5)

After applying all recommendations above, we have possible corrections for
the example of this antipattern as follows:

e Recommendation 5.3:
Cano C Jcomunica.(Albufera U Mar) Marisma);

e Recommendation 5.4:
Cano C (Icomunica.Albu fera)n(3comunica.Mar)(Icomunica. M arisma)

We provide several pseudocodes below that illustrate the detection (Code 5
and Code 6) and action process (Code 7, Code 8 and Code 9) to show how to
implement this antipattern.

Code 5 Pseudocode for AIO (5.1)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axiom in subClassAxioms
let (subClass C superClass) = axiom *
if superClass is 3 restriction
let dR.intersection = superClass
if 3C;, C; in operands of intersection where Disj(C;, C;)
disjointAxioms := get all axioms performing
the disjointness of C; and C}
add ([aziom] + disjoint Azioms, [subClass, R, operands, axiom))
into results |
return results

*We use notation ’let ... = ...” [21] as a pattern matching of both side of '=’. Example
: let (@ C b) = (Cano C Jeomunica.(Albufera M Mar M Marisma))’ yields a := Cafio and
b := Jecomunica.(Albufera N Mar M Marisma)

"Notation [z] + [y] defines a concatenation between two lists or arrays and the result is [z,].

Meanwhile, notation 'add = into L’ defines that the element x is appended into the list or array
L.

34 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 6 Pseudocode for AIO (5.2)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axioms in the ontology
for each axiom in subClassAxioms
let (subClass C superClass) = axiom
if superClass is an intersection
if 3C;, C; in operands of intersection where Disj(C;, C;)
disjointAxioms := get all axioms performing
the disjointness of C; and C}
add ([aziom] + disjoint Azioms, [subClass, operands, axiom)])
into results

return results

Code 7 Pseudocode for AIO (5.3)

Load var [subClass, R, operands, axiom] from detection process

removedAction := create an action to remove axiom
newAziom = subClass C IR.UnionO f(operands)
addedAction := create an action to add newAziom

return [removedAction, addedAction)

Code 8 Pseudocode for AIO (5.4)

Load var [subClass, R, operands, axiom| from detection process

removedAction := create an action to remove axiom

addedActionList is a list

for each operand in operands
newAxiom := subClass C dR.operand
addedAction := create an action to add newAxiom
add addedAction into addedActionList

return [removedAction|+addedActionList

Code 9 Pseudocode for AIO (5.5)

Load var [subClass, operands, axiom] from detection process

removedAction := create an action to remove axiom
newAziom = subClass T UnionO f(operands)
addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 35

5.1.2 AntiPattern OnlynesslsLoneliness (OIL)

Cy CVR.Cy; C1 CVYR.Cs; Disj(Cy, Cs); (5.6)

It is necessary to be detectable, property R must have at least a value, nor-
mally specified as existential restrictions, (minimum) or exact cardinality restric-
tion for that class with a positive number on the cardinality.

The ontology developer created a universal restriction to say that C'; instances
can only be linked with property R to Cs instances. Next, a new universal restric-
tion is added saying that C; instances can only be linked with R to C3 instances,
with C9 and C'5 disjoint. In general, this is because the ontology developer forgot
the previous axiom in the same class or in any of the parent classes. The following
is one of the two examples of this antipattern in HydrOntology:

o Aguas_de_Transicion C Vesta_proxima.Aguas_Marinas;
Aguas_de_Transicion C Vesta_proxima.Desembocadura;

If it makes sense, we propose to the ontology developer to transform the two
universal restrictions into only one that refers to the logical disjunction of Cy and

Cs.

¢W/ﬁﬁﬁ/ﬂ%/@j/gﬁ/ﬁ/ﬁ%f,ij(02, C3); = C1CVR.(CoUC3); (5.7)

According to the recommendation and to apply it on the example, we will get

new axiom :

o Aguas_de_Transicion C Vesta_préorima.(Aguas-Marinas M
Desembocadura);

In order to show how to implement this antipattern, we provide a pseudocode
of detection (Code 10) and action process (Code 11) below.

fIn the example, for readability reason, we do not show a related axiom with property R
must have at least a value and disjointness.

36 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 10 Pseudocode for OIL (5.6)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each azxioml in subClassAxioms
let (C1 C superClass) = axiom
if superClass is not V restriction
continue to the next loop
let VR.Cy = superClass
if neither 'y is a class nor UnionOf
continue to the next loop
subClassAxioms2 := get all subClassAxiom whose the subClass is C
for each axiom?2 in subClassAxioms2
let (Cy C superClass) = axiom2
if superClass is not V restriction
continue to the next loop *
let VR.C3 = superClass
if C3 == C4 or neither Cj is a class nor UnionOf
continue to the next loop
if not Disj(Cy, Cs)
continue to the next loop
if C or its ancestor have 3R.C or = mR.C or > nR.C where m,n >0
disjoint Arioms := get all axioms performing
the disjointness of Cy and Cjs
SomeFExactMinAxioms :=get all axioms performing
the clause on ’if statement’ above
axiomList :=[axiom]1, axiom?2]+
disjoint Arioms + SomeFExactMinAxioms
paramList := [axiom]1, axiom2,Cy, R, Co, Cs]
add pair (aziomList, paramList) into results

return results

*It means that the execution will continue to the next loop on the current loop

tCy == C5 represents that Cs and Cs are the same symbol (class, anonymous class, property,
etc), and it does not represent that Cs and C» are semantically equivalent. Cj5 is a class meaning
that C'3 is a proper class and not anonymous.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 37

Code 11 Pseudocode for OIL (5.7)

Load var [azioml, axiom2,C1, R, Co,C3] from detection process

removedActionl := create an action to remove axioml
removedAction2 := create an action to remove axiom2
newAzxiom := Cy CVR.(Cy U C3)

addedAction := create an action to add newAxiom
return [removedActionl,removedAction2, addedAction]

5.1.3 AntiPattern OnlynessisLonelinessWithlInheritance (OILWI)

C1 E+ Cy;C1 EVR.C3;Cy CVR.Cy; DiSj(Cg,, 04); (5.8)

Like the antipattern OIL, it is necessary to be detectable, property R must
have at least a value, normally specified as existential restrictions, (minimum) or
exact cardinality restriction for that class with a positive number on the cardi-
nality.

The ontology developer has added a universal restriction for class C7 without
remembering that he had already defined another universal restriction with the
same property in a parent class. This incoherence comes from the fact that the
subclass inherits from its parent all its constraints. This antipattern is a spe-
cialization of OIL. This antipattern appeared twice in HydrOntology debugging
process.

e Tbon C Charca; Ibon C Ves_originado.(Glaciar U Masa_de_Hielo);
Charca C Ves_originado.(Arroyo Ll Manantial L Rio);

e Albufera C Laguna; Laguna C Aguas_Quietas_Naturales;
Albufera C Ves_alimentada.Aguas_Marinas;
Aguas_Quietas_Naturales C Ves_alimentada.Aguas_Corrientes_N aturales;

To solve this antipattern, the ontology developer should follow the OIL rec-
ommendation apply on the parent class Cy. Because a child class inherit all the
axioms of its parent, all the axioms of the parents should apply on the child too.

Cy CT Cy;C1 CVR.Cs;

Dt LRIk D (Cs, Ca); } = G CVR.(C3UCy); (5.9)

From the examples of this antipattern, the recommendation 5.9 yields the
following axioms:

38 CHAPTER 5. LINT-BASED ANTIPATTERNS

e [bon C Charca; Ibon C Ves_originado.(Glaciar U Masa_de_Hielo);
Charca C Yes_originado.(GlaciarUMasa_-de_Hielol Arroyold M anantialll
Rio);

e Albufera C Laguna; Laguna C Aguas_Quietas_N aturales;
Albufera C Ves_alimentada.Aguas_Marinas;
Aguas_Quietas_Naturales C Ves_alimentada.(Aguas_Marinas U
Aguas_Corrientes_Naturales);

The code 12 is a pseudocode for detection process of this antipattern, and the
code 13 is a pseudocode for the action one.

Code 12 Pseudocode for OILWI (5.8)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAzxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C C superClass) = axiom
if superClass is not V restriction
continue to the next loop
let VR.C3 = superClass
if neither (3 is a class nor UnionOf
continue to the next loop
for each axiom?2 in subClassAxioms, but different with axioml
let (C C superClass) = axiom?2
if superClass is not V restriction
continue to the next loop
let VR.Cy = superClass
if C1 == C5 and neither Cy is a class nor UnionOf
continue to the next loop
if not Disj(c:;, Cy)
continue to the next loop
if C; CT Oy is not hold
continue to the next loop
if C or its ancestor have 3R.C or = mR.C or > nR.C where m,n >0
SomeFEzxactMinAzxioms :=get all axioms performing
the clause on ’if statement’ above
disjoint Arioms := get all axioms performing
the disjointness of C3 and Cy

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 39

Ancestor Azioms := get all axioms performing C; =+ Cy
axiomList :=Ancestor Axioms + [axiom]1, axiom2]| + disjoint Axioms—+
SomeFExact MinAxioms
paramList := [Cy, Cs3, Cy, R, axiom?2]
add pair (axziomList, paramList) into results
return results

Code 13 Pseudocode for OILWI (5.9)

Load var [Cq, C3, Cy, R, axiom?2] from detection process

removedAction := create an action to remove axiom?2
newAxiom := Cy TVR.C3 U Cy

addedAction := create an action to add newAzxiom
return [removedAction, addedAction]

5.1.4 AntiPattern UniversalExistence (UE)

01 C HR.CQ; 01 C VR.Cg; DiSj(CQ, 03); (5.10)

The ontology developer adds an existential /universal restriction to a class
whilst there was already an inconsistency-leading universal /existential restriction
in the same class or in a parent class, respectively. The following is one of three
examples of this antipattern in HydrOntology:

e Gola C Canal_Aguas_Marinas; Gola C Jecomunica.Ria;
Canal_Aguas_Marinas C Ycomunica.Aguas_M arinas;

These antipatterns are difficult to debug because ontology developers some-
times do not distinguish clearly between existential and universal restrictions.
Our proposal is aimed at resolving the unsatisfiability of a class, but as usual it
should be clearly analyzed by the ontology developer.

C1 C dR.Cy; Wy/g/y/ﬁ/ﬂ/%DZS](CZ C3); = C1CVR.(CyUCs); (5.11)

Thanks to this recommendation, the correction of the example would be:

40 CHAPTER 5. LINT-BASED ANTIPATTERNS

e Gola C Jcomunica.Ria; Gola T Yeomunica.(Aguas_Marinas U Ria);
We provide several pseudocodes below that illustrate the detection (Code 14)

and action process (Code 15) to show how to implement this antipattern.

Code 14 Pseudocode for UE (5.10)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAzxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C1 C superClass) = axiom
if superClass is not 3 restriction
continue to the next loop
let VR.Cy = superClass
if neither 'y is a class nor UnionOf
continue to the next loop
subClassAxioms2 := get all subClassAxiom whose the subClass is C}
for each axiom?2 in subClassAxioms?2
let (C1 C superClass) = axiom?2
if superClass is not V restriction
continue to the next loop
let VR.C3 = superClass
if Cy == C4y or neither Cs is a class nor UnionOf
continue to the next loop
if DiSj(Cg, Cg)
disjointAxioms := get all axioms performing
the disjointness of Cy and Cj
axiomList := [axiom]1, axiom?2]| 4+ disjoint Axioms
paramlList := [Cy,Cy, Cs, R, axiom?2)]
add pair (aziomList, paramList) into results
return results

Code 15 Pseudocode for UE (5.11)

Load var [C1, Oy, Cs, R, aziom?2] from detection process

removedAction := create an action to remove axiom?2
newAziom := Cy CVR.(Cy U C3)

addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 41

5.1.5 AntiPattern UniversalExistenceWithlnheritance (UEWI)

Cl E+ CQ; Cl C HR.Cg; CQ C VR.C4; Disj(c:;, C4);
Cy CT 09,01 EVR.C3; Oy £ 3R.Cy; Disj(C3,C4); (5.12)

The ontology developer has added an axiom in a subclass without remem-
bering that he has already defined the parent class with the R property. This
incoherence comes from the fact that subclass inherits from its parent all its
constraints. This AntiPattern is a specialization of UE.

This antipattern appeared three times in HydrOntology debugging process.

e Gola C Canal_Aguas_Marinas;
Gola C Jecomunica.Ria;
Canal_Aguas_Marinas C Ycomunica.Aguas_Marinas;

o Laguna_Salada C Laguna;
Laguna C Aguas_Quietas_Naturales;
Laguna_Salada C des_alimentada. Aguas_M arinas;
Aguas_Quietas_Naturales C VYes_alimentada.Aguas_Corrientes_N aturales;

e Jbon C Charca
Ibon C Ves_originado.(Glaciar U Masa_de_Hielo);
Charca C 3es_originado.(Arroyo U Manantial L Rio);

These two antipatterns are very difficult to debug and depend of the ontology
developer point of view. We propose a logical correction of these two antipatterns
in order to obtain a coherent taxonomy. But you need to discuss with the ontology
developer to be sure that this is what he wants to say. Maybe a more simple
solution is possible depending of the relation between C3 and Cy.

C1 Ct Cy;C1 E3R.C3;
Oy YRy Disi(Cs, Co); [7 C2E VR.(C3 U Cy);
C1 CF Cy;C1 CVR.Cs;

D f 5 BRI H Dis (Cs, C); } = C2L3R(CsUCy); (5.13)

Thanks for this recommendation, the correction of examples would be:

e Gola C Canal_Aguas_Marinas;
Gola C Jeomunica.Ria;

Canal_Aguas_Marinas C ‘v’comum’ca.(Ria U Aguas_Marinas);

42 CHAPTER 5. LINT-BASED ANTIPATTERNS

e Laguna_Salada E Laguna;
Laguna C Aguas_Quietas_Naturales;
Laguna_Salada C des_alimentada.Aguas_Marinas;
Aguas_Quietas_Naturales C Ves_alimentada.(Aguas_Marinas U
Aguas_Corrientes_Naturales);

e Jbon C Charca
Ibén C Ves_originado.(Glaciar U Masa_de_Hielo);
Charca C Jes_originado.(GlaciarUMasa_de_Hielol ArroyolUM anantialll
Rio);

We show only a pseudocode of the first type of detection. The second type is
simmetric with the first one by exchanging 3 and V on the detection and action
process. The detection process of this antipattern has the pseudocode Code 16.
The first type of this antipattern has similar pseudocode with OILWI (see 5.9).

Code 16 Pseudocode for UEWT (5.12)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C C superClass) = axiom
if superClass is not 3 restriction
continue to the next loop
let AR.C5 = superClass
if neither (5 is a class nor UnionOf
continue to the next loop
for each axiom?2 in subClassAxioms, but differentWith axiom1
let (Coy C superClass) = axiom?2
if superClass is not V restriction
continue to the next loop
let VR.Cy = superClass
if C1 == C5 and neither Cy is a class nor UnionOf
continue to the next loop
if not Disj(Cs,Cy)
continue to the next loop

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 43

if C; CT C5 holds
disjointAxioms := get all axioms performing
the disjointness of C3 and Cjy
Ancestor Avioms := get all axioms performing C; CT Co
axiomList :== Ancestor Azioms + [axiom]1, axiom?2] + disjoint Azioms
paramList := [Cy, Cs, Cy, R, axiom?2]
add pair (axziomList, paramList) into results
return results

5.1.6 AntiPattern UniversalExistenceWithPropertylnheritance (UEWPI)

R1 E RQi; 01 E ElRl.CQ; Cl E VRQ.Cg; DiSj(CQ, 03);
R1 E RQ;Cl E \V/Rl.CQ;Cl E HRQ.Cg;DiSj(CQ,Cg); (5.14)

The ontology developer misunderstands the sub-property relation between
properties, thinking that it is similar to a part-of relation. This antipattern is a
specialization of UE because C1 C 3R;.Cy; Ry T Ry = C1 E 3Ry.Ch.

This antipattern appeared 1 time in HydrOntology debugging process.

e se_extrae C es_alimentada;
Fuente_Artificiale C 3se_extrae.Acui fero;
Fuente_Artificiale C Yes_alimentada. Tuberia;

Like for UE there may exist several recommendations for this antipattern. In
our experiment, we first propose to the ontology developer the UE recommen-
dation (see equation 5.15). But the ontology developer does not validate this
solution. After some discussion ans studies, we have realized that he misunder-
stood the subclass-of relation between property. Thus, the solution was to remove
the sub property relation between R; and Rs.

Ry € Ry; C1 C3R,.Cy;
Dy sy Disi(Ca, Cs); } = GLVR. (G UC);
R1 C Ry; C1 CVR,.Cy;
Ty gy Disi(Ca, Cs);

1R is a sub property of Ry or we use an axiom RjsubPropertOfRs in Protégé.

} = (C;C ElRQ.(CQ (] C3>; (5.15)

44 CHAPTER 5. LINT-BASED ANTIPATTERNS

Ry/d/lg; Cr £ AR;1.Co; C1 C Y Ry.C3; Disj(C2, Cs);
Bt/B/ s C1 E VR1.Cy; Gy & 3R,.C; Disj(Ch, Cs); (5.16)

Because of the second recommendation, we remove sub property axiom on the
examples. The correction of examples after applying the first recommendation
would be:

e se_extrae T es_alimentada;
Fuente_Artificiale C Ise_extrae.Acui fero;
Fuente_Artificiale C Ves_alimentada.(Acui fero U Tuberia);

An implementation of this antipattern is more complex than antipattern
UEWTI since it involves a sub property axiom. We provide an example imple-
mentation for the first type of this antipattern (Code 17, Code 18 and Code 19)
. The second type is symmetric of the first one by exchanging 3 and V.

Code 17 Pseudocode for UEWPI (5.14)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C C superClass) = axiom
if superClass is not 3 restriction
continue to the next loop
let AR1.Cy = superClass
if neither 5 is a class nor UnionOf
continue to the next loop
super PropertiesR1 := get all super properties of R
if |[super PropertiesR1| == 0 *
continue to the next loop
subClassAxioms2 := get all subClassAxiom whose the subClass is C;

...(continue to the next page)

*|L| means size of list or set L.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 45

for each axiom2 in subClassAxioms2

let (C1 C superClass) = axiom?2

if superClass is not V restriction
continue to the next loop

let VRy.C3 = superClass

if Ro ¢ superPropertiesR1
continue to the next loop

if C3 == C5 or neither C5 is a class nor UnionOf
continue to the next loop

if Disj(Co,C3)
subPropertyAzxiom := get the axiom performing R C Ry
disjointAxioms := get all axioms performing

the disjointness of Cy and Cj
axiomList := [axiom1, axiom2, subPropertyAziom] + disjoint Axioms
paramList := [Cy, Ca, C3, R, axiom2, subProperty Azxiom]
add pair (aziomList, paramList) into results
return results

Code 18 Pseudocode for UEWPI (5.15)

Load var [C1, Ce, Cs, Ry, axiom?2, subPropertyAziom] from detection process

removedAction := create an action to remove axiom?2
newAzxiom := Cy C VRy.(Co U Cs)

addedAction := create an action to add newAxiom
return [removedAction, addedAction)

Code 19 Pseudocode for UEWPI (5.16)

Load var [C1, Cq, Cs, Ry, axiom?2, subPropertyAziom] from detection process

removedAction := create an action to remove subPropertyAziom
return [removedAction)

5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)

Cy C IR .C14% C1p E VR.C3; Disj(Co, C3); Cra T Chp;

02 E VR_.CM; Clb E ER.Cg; DiSj(CQ, 03); Cla E* Clb; (5.17)

46 CHAPTER 5. LINT-BASED ANTIPATTERNS

The ontology developer added restrictions about Cy, Ciq and C¥ using a
property and its inverse. This antipattern is a specialization of UEWI and SOS
because:

o (5 C dR.Clg;): C11 EdR.Cy;C11 E Chg; which is a UEWI antipattern.
See equation 5.12.

e (5 C VR .(CY,; imply that it may exist a class C1.1 E C4,; that can be
defined as C'1.1 C dR.Cs; which is a specialization of SOS antipattern. See
equation 5.40.

This antipattern appeared twice in HydrOntology debugging process.

e Mar C dalimenta.Albu fera;
Albufera C Laguna;
Laguna C Aguas_Quietas_Naturales;
alimenta = es_alimentada™; |
Aguas_Quietas_Naturales CE Ves_alimentada.Aguas_Corrientes_Naturales

e RioC Ves,riginado.N acimiento
Nacimiento © Manantial,
esoriginado = originag” ;
Manantial C Jorigina.Chortal

We propose to add the reverse axiom of the Cy definition and follow the
recommendations of SOS and UE.

C C dR~-.C a5 g y
2 ! WJ/;//’;Q/W?//%/ = Cpp C VR.(CQ (W C3)§
Disj(Cy,C3); Crq & Chyp;

Co © VR Cras Gl AT
Disj(Ca,C3); Crq EF Chp;

} = CpC HR.(CQ (] Cg); (5.18)

Because of this recommendation, the correction of examples would be:

o Mar C Jalimenta.Albu fera;
Albufera C Laguna;
Laguna C Aguas_Quietas_Naturales;

alimenta = es_alimentada™; **

SR~ is an inverse property of R or we use an axiom R inverseOfR in Protégé.
9C14 and C1p could be the same class, or they have subset relations.
TOn the Protégé, you may find it as alimenta inverseOf es_alimentada or
es_alimentada inverseO f alimenta.
**On the Protégé, you may find it as alimenta inverseOf es_alimentada or
es_alimentada inverseO f alimenta.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 47

Aguas_Quietas_Naturales C Ves_alimentada.(Mar
U Aguas_Corrientes_Naturales)

e RioC Vesoriginado.N acimiento;
Nacimiento T Manantial;
esqriginado = origina™;
Manantial C Jorigina.(Rio U Chortal)

This antipattern is more complex than UEWPI. Instead of subPropertyO f
axiom, we have an inverseOf axiom and we take into account all subClass re-
lations involved in this antipattern. We provide an example implementation for
the first type of this antipattern (Code 20 and Code 21) . The second type is
symmetric to the first one by exchanging 3 and V.

Code 20 Pseudocode for UEWIP (5.17)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C C superClass) = axiom
if superClass is not 3 restriction
continue to the next loop
let AR~.C1, = superClass
if C4, is not a class
continue to the next loop
inversePropertiesR := get all inverse properties of R~
if [inversePropertiesR| == 0
continue to the next loop
ancestorClassesCla := get all ancestor classes of C,
for each axiom?2 in subClassAxioms
let (C1p C superClass) = axiom?2
if superClass is not V restriction
continue to the next loop

...(continue to the next page)

48 CHAPTER 5. LINT-BASED ANTIPATTERNS

let VR.C'5 = superClass

if R ¢ inversePropertiesR
continue to the next loop

if C14 # Cyp and Cyp, ¢ ancestorClassesCla
continue to the next loop

if C3 == C5 or neither Cj is a class nor UnionOf
continue to the next loop

if Disj(Co,C3)
inversePropertyAziom = get the axiom performing R~ inverseOfR
ancestor Axioms := get the axiom performing C1, =* Cyp
disjointAxioms := get all axioms performing

the disjointness of Cy and C3
aziomList :=[axiom1] + ancestor Axioms+
[inverse PropertyAziom, axiom?2] + disjoint Azioms
paramList := [Cyy, Co, C3, R, axiom2]
add pair (axiomList, paramList) into results
return results

Code 21 Pseudocode for UEWIP (5.18)

Load var [C1p, Ca, Cs, R, axiom?2] from detection process

removedAction := create an action to remove axiom?2
newAziom = Cy CVR.(Cy U C3)

addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.1.8 AntiPatterns hasValueisOneValue (VOV)

C3C° C; O3 Oy
C1 C hasValue R{vi}; C2C hasValue RA{va2};
v1 #v9; Ris functional, (5.19)

The hasValue constraint is a built-in OWL property that links a restriction
class to a value v1, which can be either an individual or a data value. A restriction

containing a hasV alue constraint describes a class of all individuals for which the

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 49

property concerned has at least one value semantically equal to v (it may have
other values as well like v9)[2].

OWL functional properties indicate how many times a property can be used
for a given individual. The R property is functional means that each individual
of the class ('3 has at most one value by the property R. For example, the
hasBirthday relation between a person and his or her birthday is functional.
Everyone has just one birthday [2].

Thus the ontology developer adds a hasValue restriction to a class using a
functional property without remembering that there was already an hasValue
restriction in the same class or in a parent class, respectively. The following are
two examples of this antipattern in the SweetNumeric ontology:

e Continental _Margin CT* GeometricalObject 2D;
Continental _Margin C* GeometricalObject _3D;
GeometricalObject 2D T hasV alue hasDimension.{2};
GeometricalObject_3D T hasV alue hasDimension.{3};
hasDimension is functional;

e Aulacogen TF GeometricalObject_2D:;
Aulacogen T GeometricalObject_3D;
GeometricalObject 2D T hasV alue hasDimension.{2};
GeometricalObject 3D T hasValue hasDimension.{3};
hasDimension is functional;

The proposal for avoiding this antipattern is to remove the functional property
of R.

C3C"C1; C3CF Oy
C1 C hasValue R{v1}; C2C hasValue R.{va};

vi #va RS (5.20)

Applying this recommendation into the example, we just need to remove the
axiom hasDimension is functional;.

An implementation of this antipattern is presented by Code 22 and Code 23.
One special thing occurs in the Code 22 where a functional property can generate
more than one pattern. Examples above show this event. Removing functionality
of the property on a pattern will solve all inconsistencies on this antipattern with
this property.

50 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 22 Pseudocode for VOV (5.19)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each azxioml in subClassAxioms
let (C1 C superClass) = axiom
if superClass is not hasV alue restriction
continue to the next loop
let hasValueR.v; = superClass
if R is not functional data property
continue to the next loop
for each axiom?2 in subClassAxioms
let (Cy C superClass) = axiom2
if superClass is not hasV alue restriction
continue to the next loop
let hasValueRy.vo = superClass
if R+# Ry or v1 == v
continue to the next loop
isConnected := false, defines whether C'; and C9 are connected
by chains of C or =
axiomPath = [|*, is a list of axiom that connects C1 and Cy
intersectionDescendants = [], is a set of intersection descendant
between C7 and Cy
if C1 == Cy
isConnected := true
else if 1 C1 Cy or Cy Tt 4 holds
isConnected := true
axiomPath := get the axiom performing C; C+ Cy or Co 1 C4
else
clsDescsl := get all descendent classes of C
clsDescs2 := get all descendent classes of Cy
intersectionDescendants := intersection of clsDescsl and clsDescs?2
isConnected := (|intersectionDescendants| > 0)
if isConnected
functional Axiom := get the functional data property axiom of R
if |intersectionDescendants| ==
axiomList := [functional Aziom, axiom1, axiom?2] + axiomPath
paramList := [functional Axiom)
add pair (axziomList, paramList) into results
else

...(continue to the next page)

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 51

for each class cls in intersection Descendants
if super class of cls also in intersectionDescendants
continue to the next loop
ariomPath := get the axiom performing cls CT C; and cls T Cy
axiomList := [functional Aziom, axiom1, axiom?2] + axiomPath
paramList := [functional Axiom)
add pair (axziomList, paramList) into results
return results

Code 23 Pseudocode for VOV (5.20)

Load var [functional Aziom| from detection process

removedAction := create an action to remove functional Axiom
return [removedAction]

5.1.9 AntiPattern EquivalencelsDifference (EID)

Cl = Cz;DiSj(Cl,CQ); (5.21)

This pattern, which is only common for ontology developers with no previous
training in OWL modeling, comes from the fact that the ontology developer
means that ' is a subclass of C5, or vice versa, but at the same time it is
different from C5 since he has more information. After a short training session
the developer would discover that he really wants to express C'1 C C2. The
followings are two of six of this antipattern in HydrOntology:

e Cascada = Catarata; Disj(Cascada, Catarata);
e Raudal = Rapido; Disj(Raudal, Rapido);

We propose to ask the ontology developer whether he really wants to define a
synonym or a subclass-of relation. Depending on the ontology developer’s answer,
the equivalent axiom should be transformed into a subclass-of one or the less used
concept should be suppressed according to the SOE recommendations. In order

*[] is the empty list.

52 CHAPTER 5. LINT-BASED ANTIPATTERNS

to count less used concept, we use term frequency of a class that is calculated
according to the appearance of the class in the all axioms in the ontology.

i/ s ik ey = CrE Co (5.22)
= (Cy label of Cy; (5.23)

For the first example above, Cascada and Catarata respectively have term
frequency 32 and 26. Some possibilities of condition after applying recommenda-
tions would be:

e Cascada = Catarata;
e Cascada C Catarata;
e Catarata C Cascada;

e Cascada has some additional labels from Catarata as follows:
- [Comment] : Cascada o salto grande de agua
- [Source] : Diccionario de la Real Academio de Espanola

An implementation of the detection process is the Code 24. those recommen-
dations, as we have shown in the correction of examples above, yield some action
processes on the Code

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 53

Code 24 Pseudocode for EID (5.21)

results is a list of pair (list of axiom, list of parameter for action process)
equivalent Axioms is a set of equivalent axiom in the ontology
for each axiom in equivalent Arioms
let (Cy = C3) = axiom
if C5 is not a class
continue to the next loop
if Disj(Cy,Cy)
disjoint Arioms := get all axioms performing the disjointness of C7 and Cy
freql := count the frequency of concept C; used
freq2 := count the frequency of concept Cs used
annotationAriom] := create annotation axiom on C}
with comment Term frequency : [freql]
annotation Aziom?2 := create annotation axiom on Cy
with comment Term frequency : [freq2]
axiomList :=[axiom, annotation Axiom1, annotation Axiom?2]
+disjoint Axioms
disjointAziom := a disjoint axiom from disjointAzxioms 11
paramList := [C1, Cy, axiom, disjoint Axiom, freql, freq2]
add pair (axziomList, paramList) into results
return results

Code 25 Pseudocode for EID (5.22)

Load var [C1, Cy, axiom, disjoint Axiom, freql, freq2] from detection process

removedAction := create an action to remove disjoint Axiom

return [removedAction)

Code 26 Pseudocode for EID (5.22)

Load var [C1, Cq, axiom, disjoint Axiom, freql, freq2] from detection process

removedActionl := create an action to remove axiom
removedAction2 := create an action to remove disjointAxiom
newAxiom := Cy C Cy

addedAction := create an action to add newAxiom

return [removedActionl,removedAction2, addedAction]

T There is exactly one disjoint axiom in list of axiom disjointAzioms.

54 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 27 Pseudocode for EID (5.23)

Load var [C1, Cy, axiom, disjoint Axiom, freql, freq2] from detection process

actionList := listofaction
if freql # freq2
removedAction := create an action to remove axiom
add removedAction into actionList
removedAction := create an action to remove disjoint Axiom
add removedAction into actionList
if freql > freq2
removedAction := create an action to remove class Co
add removedAction into actionList
annotationAxioms := get all annotation axiom of class Cs
for each annAxiom in annotationAxioms
addedAction := create an action to add the annotation axiom annAzxiom
into 01
add addedAction into actionList
else
removedAction := create an action to remove class C;
add removedAction into actionList
annotation Azioms := get all annotation axiom of class C;
for each annAxiom in annotationAxioms
addedAction := create an action to add the annotation axiom annAxiom
into 02
add addedAction into actionList
return actionList

5.1.10 AntiPattern EquivalencesAreDifferences (EAD)

Cl = 03; Cg = Cg; DiSj(Cl, 02); (5.24)

The ontology developer has added a disjointness without remembering that he
has already defined both classes having synonym to another same class that could
be an anonymous class. This antipattern appeared 3 times in Tambis debugging
process.

e metal = chemical M (Jatomic-number.integer) M (= latomic-number.T));
nonmetal = chemical(Jatomic-number.integer) (= latomic-number.T));

e metal = chemical M (Jatomic-number.integer) M (= latomic-number.T));
metalloid = chemical(Jatomic-number.integer) (= Latomic-number.T));

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 55

e metalloid = chemical(Jatomic-number.integer)(= latomic-number.T));
nonmetal = chemical(Jatomic-number.integer) (= latomic-number.T));

We propose to ask the ontology developer whether he really wants to define a
synonym or change definition of synonym for C or Cs. It depends on the ontology
developer’s answer, if he prefers to define synonyms like current conditions, we

simply recommend to remove the disjoint axiom.

Cr = Cus Co = O ity 9h) (5:25)
You will find an implementation of this antipattern on the Code 28 and Code
29.
Code 28 Pseudocode for EAD (5.24)

results is a list of pair (list of axiom, list of parameter for action process)

equivalent Axioms is a set of equivalent axiom in the ontology
for each axioml in equivalent Axioms
let (C1 = C3) = axioml
equivalent Axioms2 := get all equivalent axiom whose the second operand of
=is (s
for each axiom?2 in subClassAxioms2
let (Cy = C3) = axiom?2
if Disj(Cy,Ca)
disjointAzxioms := get all axioms performing
the disjointness of C7 and Cy
axiomList := [axiom], axiom?2] + disjoint Axioms
disjoint Axiom := adisjointaxiom fromdisjoint Axioms
paramList := [disjoint Aziom]
add pair (axziomList, paramList) into results
return results

Code 29 Pseudocode for EAD (5.25)

Load var [disjointAziom| from detection process

removedAction := create an action to remove disjoint Axiom
return [removedAction]

5.1.11 AntiPattern SubclassisDifference (SID)

C1 € Cy; Disj(Cy, Co); (5.26)

56 CHAPTER 5. LINT-BASED ANTIPATTERNS

This pattern comes from a misunderstanding of subclass-of relation. It is
very closed to the EID one. This pattern was found once in the ontology Ontolo-
gia_Forestal.

e FEspecies_Forestals C Recursos_Forestal;

o Forest_Species C Forest_Ressources;

We propose to confirm whether the ontology developer really wants to define
a subclass-of relation. Depending on the ontology developer’s answer, the disjoint
axiom should be suppressed or to follow the EID recommendations.

C1 & Coi DSl 70 (5.27)

An implementation of the detection process is the Code 30. The action process
follows the action process of antipattern EAD (see Code 29).

Code 30 Pseudocode for SID (5.26)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axiom in subClassAxioms
let (C1 C Cy) = axiom
if Disj(Cy,Cy)
disjointAxioms := get all axioms performing
the disjointness of C7 and Cy
axiomList := [axiom] + disjoint Azioms
disjoint Aziom := a disjoint axiom from disjoint Axioms
paramList := [disjoint Axiom)]
add pair (axiomList, paramList) into results
return results

5.1.12 AntiPattern SubclassesAreDifferences (SAD)

C1 C Cy;Cy C C3; Disj(Cy, Cs); (5.28)

The ontology developer has added a disjointness without remembering that
he has already defined a class be subclass of both classes which are disjoint. The
following is an example of this antipattern in HydOntology:

e Zona_Humeda C Humedal,

Zona_Humeda T Surgencia_N atural;

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 57

This antipattern is almost similar to the antipattern SID, but it uses two
subclass-of relations. We propose to ask the ontology developer whether he really
wants to define a subclass-of relation. Depending on the ontology developer’s
answer, the disjoint axiom should be suppressed or the the EID recommendations
should be followed.

C1 & Co; C1 & Css Piffiay i) (5.29)

An implementation of the detection process is the Code 31. Like antipattern
SID, the action process also follows the action process of antipattern EAD (see
Code 29).

Code 31 Pseudocode for SAD (5.28)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (Cq E C3) = azioml
if neither Cs is a class nor UnionOf
continue to the next loop
subClassAxioms2 := get all subClassAxiom whose the subClass is C
for each axiom2 in subClassAxioms2
let (Cy C C3) = axiom2
if C3 == C5 or neither C is a class nor UnionOf
continue to the next loop
if Disj(Cs,C3)
disjointAxioms := get all axioms performing
the disjointness of Cy and Cj
axiomList := [axiom]1, axiom?2]| 4 disjoint Axioms
disjointAxiom = a disjoint axiom from disjoint Axioms
paramlList := [disjoint Aziom]
add pair (axziomList, paramList) into results
return results

5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MMCaR)

C1 C> 2R.Co;C3 C= yR.Cy; with y < x; (5.30)
C1 C< zR.Cy;C3 C= yR.Co; with x < y; (5.31)

C1 and C5 on both equations above must fulfill one of following conditions:

58 CHAPTER 5. LINT-BASED ANTIPATTERNS

Cq and C5 are the same class

C1Ct s

Cs CH Oy

e C,CTCrand C4CT (4

The ontology developer may miss that a cardinality restriction about Cy, Co, Cs
and the property R does exist. This antipattern does not appear in the debugged
ontologies, it was deduced from the use of existential restriction that implies a
minimal cardinality one. Thus it was derived from a more complicated one of
the ECR 5.44, which appear several times in Hydrontology. The following is an
example of this antipattern in ComputerScience:

e TeachingFaculty E< 3takesCourse.Thing;
LecturerTakingdCourses C= 4takesCourse.Thing;
LecturerTakingdCourses = Lecturer;

Lecturer C TeachingFaculty;

We propose to ask the ontology developer which cardinality restriction is the
good one and remove the other.

Cr C2 oR-Cos Gy iyl (5:32)
C1 C< oR.Cos Gl iyl (5:33)

An implementation of the detection process is the Code 32. Any recommen-
dations will remove an axiom as returned on paramList := [axiom], aziom?2] in
that code. Thus, we reuse the same action processes on the Code

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 59

Code 32 Pseudocode for MMCaR (5.31)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAzioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (Cy C superClass) = axioml
if superClass is not a < restriction *
continue to the next loop
let < xR.Cy = superClass
for each axiom?2 in subClassAxioms, but different with azioml
let (C3 C superClass) = axiom?2
if superClass is not an = restriction
continue to the next loop
let = yRo.Cop, = superClass
ingb#CQ OI‘R#RQ
continue to the next loop
ifex<y
continue to the next loop
tsConnected := false, defines whether C; and Cs are connected
by chains of C or =
axiomPath =[], is a list of axiom that connects C and Cj
intersectionDescendants := [, is a set of intersection descendent
between C7 and Cs
if C1 == Cs
isConnected := true
else if 1 CT C3 or C3 T C holds
isConnected := true
axiomPath := get the axiom performing C; T C3 or C3 CF C4
else
clsDescsl := get all descendent classes of C
clsDescs3 := get all descendent classes of C3
intersectionDescendants := intersection of clsDescsl and clsDescs3
isConnected := (|intersectionDescendants| > 0)
if isConnected
if |intersectionDescendants| ==
axiomList := [axiom]1, axiom?2]| + axiomPath
paramList := [axiom1, axiom2]
add pair (axziomList, paramList) into results
else
for each class cls in intersectionDescendants
if super class of cls also in intersectionDescendants
continue to the next loop
axtomPath = get the axiom performing
clsCT Cp and cls CT Cs
axiomList := [axiom1, axiom?2]| + axiomPath
paramList := [axiom1, axiom2]
add pair (axziomList, paramList) into results
return results

60 CHAPTER 5. LINT-BASED ANTIPATTERNS

5.1.14 AntiPattern Existential&CardinalityRestrictionWithInverseProperty
(ECRWIP)

Basic formula for this antipattern as follow:
Cl C HR_.CQ; 02 C= lR.T; CQ C HR.Cg; Disj(Cl, Cg); (5.34)

From the basic formula above, we have found several extended formulas for
this antipattern as follow:

e C1 C 3R .Cy;Cy E=1R.T;Cy C 3R.C3; Disj(Ch,C3); Co T Cag;

° Cl C ElRi.CQ;CQa C= lR.T;CQQ C 35.03;Di8j(01,03);02 EJF Cga;S C
R

This antipattern appeared three times in HydrOntology debugging process.
Following is an example of this antipattern.

o Tuberia C Jalimenta.Fuente_Artificial;
es_alimentada = alimenta™;
Fuente_Artificial E= les_alimentada.T;
se_extrae C es_alimentada;
Fuente_Artificial C 3se_extrae.Acui fero;
Disj(Tuberia, Acui fero);

This antipattern leads to the unsatisfiability of Co on the equation 5.34
because C7 C dR™.Cy;E Cy C dR.C4;. Thus we obtained a SOS antipattern and
a MMCar one that composed an ECR one. Therefore, you should follow the SOS
recommendation and after checking the cardinality restriction.

C1 CT3R .Cy;Cy E=1R.T;
G g gy Disi (Cr, Cs); } = CRE3R(C1UCs); (5.35)

The correction of the above example after recommendation, would be:

o Tuberia C Jalimenta.Fuente_Artificial;
es_alimentada = alimenta™;
Fuente_Artificial E= les_alimentada.T;
se_extrae C es_alimentada;
Fuente_Arti ficial C Jse_extrae.(Tuberia Ll Acui fero);
Disj(Tuberia, Acui fero);

*<, >, = restriction mean respectively a minimal, maximal and exact cardinality restriction.

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 61

This antipattern is more complex than UEWIP. We have an exact cardinality
restriction and possibility that sub property relation may occur. We also take
into account all subClass relations involved in this antipattern. We provide an
example implementation of this antipattern (Code 33 and Code 34).

Code 33 Pseudocode for ECRWIP (5.34)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each axioml in subClassAxioms
let (C C superClass) = axiom]l
if superClass is not 3 restriction
continue to the next loop
let AR~.Cy = superClass
if C5 is not a class
continue to the next loop
inversePropertiesR := get all inverse properties of R~
if |inversePropertiesR| == 0)
continue to the next loop
ancestorClassesC?2 := get all ancestor classes of Co
for each axiom2 in subClassAxioms
let (Cop C superClass) = axiom?2
if superClass is not an exact cardinality restriction
continue to the next loop
let = nR.C' = superClass
ifn#£1
continue to the next loop
if C'is not OWL Thing
continue to the next loop
if R ¢ inversePropertiesR
continue to the next loop
if Cop # Co and Cyy, ¢ ancestorClassesC2
continue to the next loop
subPropertiesR :=get all sub property of R
add R into subPropertiesR
subClassAxioms2 := get all subClassAxiom whose the subClass is Cyp
for each axiom3 in subClassAxioms
let (Cqp C superClass) = axiom3

...(continue to the next page)

62 CHAPTER 5. LINT-BASED ANTIPATTERNS

if superClass is not 3 restriction
continue to the next loop
let 35.C5 = superClass
if S ¢ subPropertiesR
continue to the next loop
if neither Cj is a class nor UnionOf
continue to the next loop
if Disj(C1,C3)
disjointAxioms := get all axioms performing
the disjointness of C; and Cj
inversePropertyAxiom := get the axiom performing
R inverseOfR
ancestor Axioms := get the axiom performing Cy C* Cy
subProperty Axiom := get the axiom performing
S subPropertyOf R if possible
axiomList :=[axziom]1] + ancestor Axioms + [inverse Property Aziom|+
[axiom?2, subProperty Aziom, axiom3| + disjoint Axioms
paramList := [Cy, Cyy, Cs, S, axiom3]
add pair (aziomList, paramList) into results
return results

Code 34 Pseudocode for ECRWIP (5.35)

Load var [C1, Cy, C3, S, axiom3] from detection process

removedAction := create an action to remove axiom3
newAziom = Cy, C AR.(C1 U Cs)

addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER)

Basic formula for this antipattern as follow:
Cy C=1R.T;Cy C 3R.Cy; C1 IR.Cs; Disj(Ca, Cs); (5.36)

The ontology developer has added restrictions about C, Cy and C3 using a
property, exact restriction with cardinality one and a disjoint axiom. Obviously,

5.1. DETECTABLE LOGICAL ANTIPATTERNS (DLAP) 63

this antipattern is a specialization of SOS. The additional axiom Cy C= 1R.T;
causes (7 be unsatisfiable.

From the basic formula above, we have found several extended formulas for
this antipattern.

L] Cl C= lR.T; Cla C ElR.CQ; Clb C E|R.C3; Disj(CQ, Cg);, where Cl, Cla and
C1p must fulfill one of the following conditions:

- C1 & Ciq and C1 &F Cyy,
— (1o C" Cy and C1 C&F Oy,
- Cp & Cy and C1 TF Chg

e (1 C=1R.T;C; C 3R,.Cy;Cy € JRy.C3; Disj(Co, C3);, where Ry T R
and Ry C R.

e Combination between subclass and sub property from previous points above.

This antipattern appeared twice in HydrOntology debugging process. Follow-
ing is an example of this antipattern.

o Arroyo C= les_originado.T;
Aguas_Corrientes_Naturales C Jes_originado. M anantial;
Torrente C Jes_originado.(Glaciar U Masa_de_Hielo);
Torrente C Arroyo;
Arroyo C Aguas_Corrientes_Naturales;
Disj(Manantial, (Glaciar U Masa_de_Hielo));
, because Disj(Manantial, Glaciar) and Disj(Manantial, Masa_de_Hielo)

Since this antipattern is a special case of SOS antipattern, then we follow the
recommendations of SOS.

Cl E: 1RT, Cl E ElR.CQ;

WW/W%DMCQ,G@;} = C1E3R(CUGCs); (5.37)

The correction of the example would be:

e Arroyo C= les_originado.T;
Aguas_Corrientes_Naturales C Jdes_originado. M anantial;
Torrente C Jes_originado.(Manantial U Glaciar U Masa_de_Hielo);
Torrente C Arroyo;
Arroyo C Aguas_Corrientes_Naturales;
Disj(Manantial, (Glaciar U Masa_de_Hielo));

64 CHAPTER 5. LINT-BASED ANTIPATTERNS

This antipattern is almost as complex as ECRWIP, but we do not use an
inverse property. We provide an example implementation of this antipattern
(Code 35 and Code 36). This implementation has already covered basic and
extended formula for the detection process. On the detection process, we suggest
to choose an axiom containing a parent class (if there is a subclass relation) which

will be removed on the action process.

Code 35 Pseudocode for SOSER (5.36)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axiom in the ontology
for each azxioml in subClassAxioms
let (C C superClass) = axioml
if superClass is not an exact cardinality restriction
continue to the next loop
let = nR.C' = superClass
ifn#1
continue to the next loop
if C is not OWL Thing
continue to the next loop
subPropertiesR :=get all sub property of R
add R into subPropertiesR
for each axiom?2 in subClassAxioms
let (C14 C superClass) = axiom?2
if superClass is not 3 restriction
continue to the next loop
let AR;.Cy = superClass
if Ry ¢ subPropertiesR
continue to the next loop
if neither C5 is a class nor UnionOf
continue to the next loop
for each axiom3 in subClassAxioms
let (C1p C superClass) = axiom3
if superClass is not 3 restriction
continue to the next loop
let AR5.C3 = superClass
if Ry ¢ subPropertiesR
continue to the next loop

...(continue to the next page)

5.1.

DETECTABLE LOGICAL ANTIPATTERNS (DLAP)

if neither 5 is a class nor UnionOf
continue to the next loop
if C; C* C4, and C7 C* C7p holds
bottomClass := C;
topClassl := Cq,
topClass2 := Cyy
else if C1, C* Cq and Cq, TF Cqp holds
bottomCllass := C1,
topClassl := C
topClass2 := Chy;
else if C1p C* Cq and Cqp T* O holds
bottomClass := Cy
topClassl := C
topClass2 := C,
else
continue to the next loop
if Disj(Co,C3)

subPropertyAxioms := get all axioms performing Ry subPropertyOf R

and Ro subPropertyO f R if possible
disjointAxioms := get all axioms performing
the disjointness of Cs and Cj

ancestor Axiomsl := get all axioms performing

bottomClass C* topClassl
ancestor Axioms2 := get all axioms performing

bottomClass C* topClass2
axiomList :=[axiom], axiom?2, axiom3] + subProperty Axioms+

disjoint Axioms + ancestor Axiomsl + ancestor Axioms2

if topClassl == Cy
if topClass2 == C1,
paramlList := [Cy, C3, C14, R1, axiom?2]
else
paramList := [Co, Cs3, C1p, Ro, axiom?2]
else if topClass2 == C4
if topClassl == Cy,
paramList := [Cy, Cs3, C1q4, R1, axiom2]
else
paramlList := [Cy, C3, Cyp, Ra, axiom2]
else
paramList := [Cq, C3, C1p, Ro, axiom?2]
add pair (aziomList, paramList) into results

return results

66 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 36 Pseudocode for SOSER (5.37)

Load var [Cq, C3, Class, Relation, axiom| from detection process

removedAction := create an action to remove ariom3
newAziom := Class C JRelation.(Cy U Cs3)
addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.2 Cogpnitive Logical AntiPatterns (CLAP)

5.2.1 AntiPattern SynonymOrEquivalence (SOE)

Cl = CQ; (538)

The ontology developer wants to express that two classes C] and Cy are iden-
tical. This is not very useful in a single ontology that does not import others.
Indeed, what the ontology developer generally wants to represent is a termino-
logical synonymy relation: the class C'y has two labels: C; and Cs. Usually one
of the classes is not used anywhere else in the axioms defined in the ontology. In
HydrOntology, this antipattern appears six times The following is an example of
this antipattern in HydrOntology:

o Afluente = Rio;

The proposal for avoiding this antipattern is the following (if Co is the less
used term in the ontology) add all the comments and labels of C5 into Cy and
remove Cs.

Ci#/0}#f = Ci.[rdfs: label|comment] = Cy.[rdf s : label|comment](5.39)

For the example above, Afluente and Rio respectively have term frequency
24 and 146. The proposal of this antipattern will remove the class A fluente. Rio
will have some additional labels from A fluente as follows:

e [Provenance] : Curso de agua principal — Catdlogo de fenémenos.
Proyecto GEOALEX

e [Provenance] : Directiva Marco del Agua.Unién Europea
e [Provenance] : Water Framework Directive. European Union

e [Comment] : Masa de agua continental que fluye en su mayor parte sobre
la super ficie del suelo, pero que puede fluir bajo tierra en parte de su curso

5.2. COGNITIVE LOGICAL ANTIPATTERNS (CLAP) 67

e [label] : Curso de agua principal
e [label] : Curso fluvial
o [label] : River

An implementation of this antipattern is simpler than EID antipattern. The
Code 37 represents the detection process of it, while the Code 38 represents the
action process.

Code 37 Pseudocode for SOE (5.38)

results is a list of pair (list of axiom, list of parameter for action process)

equivalent AxiomsOntology is a map of equivalent axiom and ontology in the ontologies
for each (axiom,ontology) in equivalent AxiomsOntology
let (Cy = C3) = axiom
if C5 is not a class
continue to the next loop
if Oy exists in ontologies\{ontology}**
continue to the next loop
if Cy exists in ontologies\ontology
continue to the next loop
freql := count the frequency of concept C] used
freq2 := count the frequency of concept Cs used
annotationAxiom] := create annotation axiom on Cj
with comment Term frequency : [freql]
annotationAriom?2 := create annotation axiom on Cy
with comment Term frequency : [freq2]
axiomList := [axiom, annotation Axiom], annotation Axiom?2]
paramList := [Cy, Co, axiom, freql, freq2]
add pair (aziomList, paramList) into results
return results

68 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 38 Pseudocode for SOE (5.39)

Load var [C1, Cy, axiom, freql, freq2] from detection process

actionList := listofaction
if freql # freq2
removedAction := create an action to remove axiom
add removedAction into actionList
if freql > freq2
removedAction := create an action to remove class Cy
add removedAction into actionList
annotation Azioms := get all annotation axiom of class Cy
for each annAxiom in annotationAxioms
addedAction := create an action to add the annotation axiom annAxiom
into 01
add addedAction into actionList
else
removedAction := create an action to remove class Cq
add removedAction into actionList
annotation Azioms := get all annotation axiom of class C
for each annAxiom in annotationAxioms
addedAction := create an action to add the annotation axiom annAxiom
into Cy
add addedAction into actionList
return actionlList

5.2.2 AntiPattern SumOfSom (SOS)

Cl E ER.CQ; Cl E ER.Cg; D’isj(CQ, 03); (5.40)

The ontology developer has added a new existential restriction without re-
membering that he has already defined another existential restriction for the
same class and property. Although this could be no problem in some cases (e.g.,
a child has at least one mother and at least one father), in many cases it represents
a modeling error. Moreover notice that this antipattern implied a minimal max-
imal cardinality restriction (MMCaR) C1 = 3R.Cy; Cy € 3R.Cs; Disj(Ca, Cs); F
C1 C (> 2R.T). When the antipattern is detected, we should check if any MM-
CaR antipattern occurred in order to produce an ECR one. The following is an
example of this antipattern:

e Rio C Jpuede_fluir.Corriente_Subterrinea;
Rio C dpuede_fluir. Ponor;

5.3. GUIDELINES 69

Ontology developers should understand clearly the combination of two exis-
tential restrictions. Our proposal is to clarify the modeling thus we propose to
merge the two axioms in one existential restriction using disjunction of Cy and

Cs.

B RN AR Disi(Co, o) = C1 CIR(C2UCH); (5.41)

An implementation of this antipattern will follow the implementation of an-
tipattern OIL (see Code 10), but instead of universal restrictions here, we use
existential restrictions.

5.3 Guidelines

5.3.1 Guideline UnioninEquivalency(UIE)

Cy =C1UCCy; (5.42)

The ontology developer may want to say that Cy does not take any instances
outside of C7. Instead of defining C as the equivalency of C; LI Cs, it could be
more appropriate to state that Cs is a subclass of C';. The following is an example
of this antipattern in HydrOntology:

e Deposito = Deposito LI Recinto;
We propose a subClass relation as impact of equivalency formula 5.42.
DT = C2 & O (5.43)
After applying the recommendation, the correction would be:
e Recinto C Deposito;

We take into account the number of operands in the union. Thus, we need to
classify whether an operand belongs to a group that each of element is equivalent
with Cj or not (see the Code 39). For every operand that is not equivalent with
C1, we construct a new subclass relation (see the Code 40).

70 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 39 Pseudocode for UIE (5.42)

results is a list of pair (list of axiom, list of parameter for action process)

equivalent Arioms is a set of equivalent axiom in the ontology
for each axiom in equivalent Axioms

let (C1 = unionClass) = axiom

if unionClass is not a union

continue to the next loop
if all operands in unionClass are a class
continue to the next loop
equivalentClosure := get all class that equivalent with Cy

operandsEquiv := [|, set of operands that are equivalent with Cy
operandsNot := ||, set of operands that are not equivalent with C
equivalent Azioms = ||, set of equivalent axiom

for each operand in operands of unionClass
if operand € equivalentClosure
add operand into operandsEquiv
equAxioms := get all axioms performing operand = *C
equivalent Axioms := equivalent Axioms + equAxioms
else
add operand into operandsN ot
if |operandsEquiv| > 0 and |operandsNot| > 0
axiomList := [axiom] + equivalent Axioms
paramList := [axiom, Cy, operandsN ot]
add pair (axiomList, paramList) into results
return results

Code 40 Pseudocode for UIE (5.43)

Load var [aziom, C1, operandsN ot] from detection process

removedAction := create an action to remove axiom
addedActionList is a list
for each operand in operandsNot
newAxiom := operand C Cq
addedAction := create an action to add newAxiom
add addedAction into addedActionList
return [removedAction] + addedActionList

5.3.2 Guideline Existential & Cardinality Restriction(ECR)

C1 C 3R.Cy;C1 C (> 2R.T); (for example) (5.44)

5.3. GUIDELINES 71

Ontology developers with little background in formal logic find difficult to
understand that "only” does not imply ”some” [18]. This antipattern is a coun-
terpart of that fact. Developers may forget that existential restrictions contain
a cardinality constraint: ¢y C 3R.Cy F C; C (> 1R.C3). Thus, when they com-
bine existential and cardinality restrictions, they may be actually thinking about
universal restrictions with those cardinality constraints. This antipattern can be
a complex one because it may contain a SOS antipattern and a MMCaR one.
The following is an example of this antipattern in HydrOntology:

e Fstero C desta_proxima.Desembocadura
Estero C> lesta_proxima.T

We propose to transform the existential restriction into a universal one when
a cardinality restriction exists.

QBRI CL E (= 2R.T); = C1 CVR.Cy; (5.45)

Because of this proposal, the correction of the example would be:

e Fstero C Vestd_proxima.Desembocadura
Estero C> lestd_proxima. T

It is easy to create an implementation of this antipattern, since what we need
has been implemented in the previous antipatterns. The Code 41 and 42 are an
implementation of this antipattern.

72 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 41 Pseudocode for ECR (5.44)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAzxioms is a set of subclass axiom in the ontology
for each azxioml in subClassAxioms
let (C1 C superClass) = axioml
if superClass is not a >-restriction
continue to the next loop
let > xR.C' = superClass
if C' is not OWL Thing
continue to the next loop
subClassAxioms2 := get all subClassAxiom whose the subClass is C
for each axiom?2 in subClassAxioms2
let (Cy C superClass) = axiom2
if superClass is not 3 restriction
continue to the next loop
let AR5.Cy = superClass
if R# Ro
continue to the next loop
axiomList := [axiom1, axiom?2]
paramList := [C1,Ca, R, axiom2]
add pair (aziomList, paramList) into results
return results

Code 42 Pseudocode for ECR (5.45)

Load var [C1, Cy, R, axiom?2] from detection process

removedAction := create an action to remove axiom?2
newAxiom = C1 T VR.Cy

addedAction := create an action to add newAxiom
return [removedAction, addedAction]

5.3.3 Guideline Distributivity On Subclass (DOS)

C1 ECo M...NCop; (546)

Sometimes, we cannot see a consistency because a axiom is inside of another
axiom. The ontology developer has developed a complex axiom and he does not
realize that it can be decomposed to several axioms. By applying distributivity on
subclass relation over intersection, it will remove the original axiom and produce
n new axioms that will make debugging process easier.

5.3. GUIDELINES 73

In HydrOntology, this antipattern appears three times.

e Confluencia C (Iconecta.Rio) N (= 2conecta.T);

o Aguas_Corrientes_Naturales C (Vdesemboca.(Aguas_Corrientes
UAguas_Marinas U Aguas_Quietas)) M (= ldesemboca.T);

e Captacién C (3captura.Rio) M (= 2captura.T);

We propose a recommendation below that semantically both sides are equiv-
alent.

Difa/ iy = Cr & Cans €1 E Con (5.47)

We will get the correction of examples as follows:

o Confluencia C Jeonecta.Rio;
Confluencia C= 2conecta.T;

o Aguas_Corrientes_Naturales C Ydesemboca.(Aguas_Corrientes
U Aguas_Marinas Ll Aguas_Quietas);
Aguas_Corrientes_Naturales C= ldesemboca.T;

e Captacién C Jeaptura.Rio;
Captacion C= 2captura.T;

The detection process of this antipattern is implemented in very simple way
on the Code 43. The action process (Code 44) follows the action process of
antipattern UIE, but we have another direction of C for each operand.

Code 43 Pseudocode for DOS (5.46)

results is a list of pair (list of axiom, list of parameter for action process)

subClassAxioms is a set of subclass axioms in the ontology
for each axiom in subClassAxioms
let (Cy C superClass) = axiom
if superClass is an intersection
add ([axiom], [axiom, Cy, operands]) into results
return results

74 CHAPTER 5. LINT-BASED ANTIPATTERNS

Code 44 Pseudocode for DOS (5.47)

Load var [axziom, Cy, operands] from detection process
removedAction := create an action to remove axiom
addedActionList is a list

for each operand in operands

newAxiom := Cy C operand
addedAction := create an action to add newAxiom
add addedAction into addedActionList

return [removedAction| + addedActionList

Chapter 6

Apero Plug-in

This chapter presents the support tool that we call Apero (AntiPatternExtRac-
tiOn). Our discussion covers how to analyze, design and implement this tool.

6.1 Analysis

OWL ontology debugging features have been proposed in the literature with dif-
ferent degrees of formality ([9],[15],[23]). But, they are mainly focused on the
explanations of logical entailments and are not so focused on the ontology engi-
neering side. A debugging strategy that involves the ontology engineering side,
has been proposed [5]. It leads an ontology developer how to debug incoherent
ontologies. It has proposed a global ontology debugging life cycle involving the
role of knowledge engineer and domain expert. We assume that an ontology
developer has those roles. Figure 6.1 displays graphically this strategy.

From the workflow that is described on the figure, we propose Apero as a plug-
in that we attach into Protégé which must have the following functionalities:

e Manual processes in the workflow are checking for unsatisfiable classes,
choosing a root unsatisfiable classes, computing justification or inspecting
class definition, documentation, validation and creation of a new version
of the ontology. Apero must be compatible with all manual processes.
Especially for documentation and validation, Apero must provide enough
information to support those processes. The information should cover :

— the formula of an antipattern
— how an antipattern is constructed

— available recommendations and their description

— a set of actions that the ontology developer can execute

75

76

CHAPTER 6. APERO PLUG-IN

Compute justification

orinspect class definition

[Knowledge
Choose a root Enf’rm}eer .
i . KE T
LEatisfiacie ciugs AntiPattern Identification — =

Recommendation
AntiPattern Correction
Documentation

Validation

Check for
unsatisfiable
classes

Agreement?

YES

Creationof a new

: Solution
version of the ontology

e In order to support the manual process, especially inspecting class defini-

tions, Apero will provide a transformation process that helps the ontology
developer to convert a class definition into an expected one. He needs to
save into a new ontology since the ontology before and after this process
are unlike.

The axiom transformation has several rules that we cannot classify them
into an antipattern. For the current implementation, we will limit the im-
plementation only to one rule transformation (formula 6.1).

Ci=C1M...MCy,; = C1LCECoy;...;CLE Coyp; (6.1)

Apero will identify or detect an antipattern.

An antipattern is constructed by a set of axioms, as an instance of the
antipattern. Two instances of an antipattern possibly can share axioms.
We choose to repeat displaying the axiom, thus the ontology developer find
it easier to see how an instance is built. The result of this process is a table
of antipattern instances.

Apero must able to do some corrections and show the result as a recom-
mendation for the future solution.

The ontology developer as the user probably wants to focus on a certain
instance. Apero will provide the correction immediately for each observed
instance, without affecting the current ontology.

Apero will apply the selected recommendation as a solution.
A recommendation consists of a set of actions adding or removing axioms

6.2. DESIGN 7

produced by correction of an antipattern.

e Apero facilitates users to propose and create new antipattern.
Apero must be easy to be configured and allow users to propose new an-
tipattern. They are also expected to be able to create new antipatterns as
easy as possible.

e Apero will accommodate two type of antipattern implementations.
We know that there are two types of antipatterns in our previous discussion.
Both OPPL and Lint should be implemented transparently.

6.2 Design

6.2.1 Configuration

Configuration of Apero is a configuration that contains information needed by
Apero. For every item of information in the configuration we call it as parameter.
According to what we have already analyzed, we design the configuration as the
following parameters:

e OPPL folder
Since we will have two types of antipatterns, the configuration must ac-
commodate these. An OPPL antipattern is provided as a script in a text

file. Thus, we put all scripts into a specific folder that we parameterize
OPPLFolder.

e Group of antipattern category This configuration covers information about
all groups of antipattern category. It consists of number of group and group
detail as parameters. A group has name, description and remark (see table
6.2.1).

Table 6.1: A group of antipattern category

No | Parameter | Optional | Summary

1 name group name and must be unique
2 desc Yes Short description of this group
3 remark Yes Full description of this group

e Antipattern This configuration covers information about all antipatterns. It
consists of number of antipattern and detail of antipattern. A antipattern
configuration has information depending on the type of implementation,
namely oppl and lint as we state in the table 6.2 and 6.3 respectively.

The validity of configuration is determined by its parameters with condition
as follows:

78

CHAPTER 6. APERO PLUG-IN

Table 6.2: A OPPL-based antipattern configuration

No | Parameter Optional | Summary
1 name Antipattern name and must be unique
2 formula Latex formula for this antipattern
3 formulaDetail Yes Additional latex formula if necessary
3 desc Yes Description of this antipattern
4 type Type of this antipattern, either Lint or OPPL
5 opplQueryPrefix file name that contains variable
declaration and query part of OPPL script
and represent a detection process
6 numberOfAction Number of possible recommendation
7 group Group name (see table 6.2.1)
For each action 1 to [numberOfAction]
8 action[i].name Action name and must be unique in this antipattern,
[i] represents a sequence number of the action
9 action[i].query file name that contains action part of OPPL Script
and represents an action process
10 | action[i].remark Yes Description of this action
Table 6.3: A Lint-based antipattern configuration
No | Parameter Optional | Summary
1 name Antipattern name and must be unique
2 formula Latex formula for this antipattern
3 formulaDetail Yes Additional latex formula if necessary
3 desc Yes Description of this antipattern
4 type Type of this antipattern, either Lint or OPPL
5 lintQueryClass Java class that represents a detection process
6 numberOfAction Number of possible recommendation
7 | group Group name (see table 6.2.1)
For each action 1 to [numberOfAction]
8 action[i].name Action name and must be unique in this antipattern,
[i] represents a sequence number of the action
9 action[i].lintClass Java class that represents an action process
10 | action[i].remark Yes Description of this action
e Antipattern names must be unique.
e The total of existing antipattern in the configuration has be to equal or
greater than the number of antipattern, with the correct sequence number.
e The total number of groups in the configuration has to be equal or greater

than the number of groups, with the correct sequence number.

Action names for every antipattern must be unique.

6.2. DESIGN 79

e The total number of actions for every antipattern has to be equal or greater
than its number of actions, with the correct sequence number.

e The value of parameter type are only OPPL (not case sensitive) and lint
. Otherwise, we treat it as a Lint-based antipattern.

e A OPPL-based antipattern must have parameter opplQueryPrefix and
actionli].query.

e A Lint-based antipattern must have parameter lintQueryClass and
action[i].lintClass.

e The text file of parameter opplQueryPrefix and action[i].query must be
exist in the folder parameter OPPLFolder.

e The Java class of parameter lintQueryClass and action[i].lintClass must
be exist in the package plug-in.

e The value of parameter group for every antipattern has to be in one of
existing groups.

e All parameters must have a value except an optional parameter.

6.2.2 Transformation Process Design

Graphically, we design the transformation process on Figure 6.1. We expect that
Apero will find all axioms from the ontology that fulfill the existing transforma-
tion rules, and provide it together with its solutions (result axiom and annotation
axiom). Besides getting the result axiom as result of the process, Apero will also
create a new annotation axiom for every result axiom informing to the ontology
developer that this result axiom is automatically generated by Apero. After he
manually selects the transformation to proceed, Apero will transform or execute
the selected transformation permanently into the ontology. He must save the
current ontology as a new ontology since both ontologies before and after the
process are not the same anymore.

6.2.3 Detection Process Design

The figure 6.2 displays a flowchart of the detection process. What we display on
the flowchart is briefly how Apero detects an antipattern. Details of the detection
process for every antipattern have been described with pseudocodes in Chapter
4 and 5.

The ontology developer probably wants to observe some antipatterns. Af-
ter he chooses some antipatterns, for every selected antipattern, Apero will try
to match with all axioms in the ontology. The matching axioms (including its

80 CHAPTER 6. APERO PLUG-IN

Transformation
rule

a5
Start X
Axio fom

End
New Save
P—
Yes More

selection <« |
Result Annotation ?
Axiol Axiom Result |I Annotation I
Axiol Axiom

l Delete axiom
Add the resulting axioms Legend:
Add auto-generated annotation axiom \ r/—l -
Transform gpdalted Manual m) ontology)
/ ntology | Auto | Action type, Rule

or Antipattern

Figure 6.1: Transformation process flowchart

binding variables) with an antipattern is called as an instance of antipattern. It
is important to keep pair of the matching axioms and its binding variables that
we can use as parameters for execution process. Since we have two types of im-
plementation (OPPL and Lint), Apero has two different detection process. In
OPPL, a matched axiom is called an instantiated axiom.

OPPL naturally can evaluate a query (detection and action) once. Evalua-
tion only simulates, does not affect to the ontology, and takes every instantiated
axioms and its binding variables as an instance. Thus in order to complete a
detection query, we always take one action query. Meanwhile, Lint sequentially
takes Java class for detection process, runs it and returns pairs of matched axioms
and its binding variables as instances. Apero will memorize every set of instance
into a detection table, such that Apero will be easy and fast to display the result.

6.2.4 Execution Process Design

The figure 6.3 displays a flowchart of the execution process. This covers a lot
of manual process as well as automatic process. We assume that the ontology
developer is focusing on an antipattern. The flowchart briefly shows how Apero
proceed with instances of antipatterns after the detection process. At one point
in the flowchart, we will run the action process that we discussed in Chapter 4
and Chapter 5. This action process will be run in the box EvaluatebyOPPL or
GetOW LActionListbyLint. An action list as output of those processes is a list

6.2. DESIGN

81

Select
Antipatterns

Selected
Antipattern

Start

—

NS End
More

Save into

The Table

&

Antipattern i-th L

Antipattern i-th Instance

SIET

Action type, Rule
or Antipattern

Antipattern L)

?
\L Yes

Antipattern

!

OPPL or
Lint?

=

Axiom

Find Axiom
by Lint

Evaluate by
OPPL

Antipattern Instance

(=T

| B L e

Figure 6.2: Detection process flowchart

Antipattern i-th Instance

EIrET

Select
Sttt Instances
JE———
Select Action Selected
Action

Validate
Action List

More
instance?

Updated
Ontology

Antipattern i-th Instance

SR

OPPL or

Addinto
Action List

Lint?

Get OWL
Legend: = Evaluate by Action List by
OPPL Lint
_l
Action type, Rule Axiom
or Antipattern Change

Figure 6.3: Execution process flowchart

82 CHAPTER 6. APERO PLUG-IN

of axiom changes in Apero. An axiom change is an action that has the ability to
add or remove the mentioned axiom in an ontology.

The ontology developer can select more than one instance. Meanwhile, an
antipattern has some possible actions. We will display their name in the list
but he can only choose one. An action name is automatically set to the first
option. Once he selects either instance or action, Apero automatically generates
corrections as recommendations.

Like detection process, in this process, we apply two different implementation
in order to generate a recommendation. On OPPL, we still use evaluation with
additional binding variables on the detection part of a query.

A binding variable in OPPL syntax is a string ?[variable Name|M ATCH
" [variableValue]”. We put every binding variable sequentially at the end of the
detection part. After Apero runs the evaluation, it will return a set of axiom
change. On Lint implementation, the process runs easier. Apero will run a Java-
class implementation of the action process with binding variables as input and
generate a set of axiom changes. A binding variable in Lint implementation is
just a vector or list of variable values. We do not need the variable name because
the Java-class has already known it from the sequence in the vector. For every
selected instance, Apero will collect all sets of axiom changes together in an action
list.

This action list that contains a set of axiom change needs to be validated and
contribution of users is very important here. They can delete unappropriated
axiom changes or try another possible action. To finalize the process, Apero will
execute all final axiom changes and affect directly into the current ontology. Since
the ontology is updated, it is important to create new version of this ontology.

6.3 Implementation

6.3.1 Environment

The plug-in has been successfully built using Java programming language with
the following environments:

e Java Development Kit 1.6 and Eclipse as the development tool.

e OWL API 2.0 under Protégé 4.0 to enable to use classes and functionality
in Protégé.

e OPPL 2 API (org.coode.oppl-APL jar) to allow to access all OPPL function.

*

*the source of API is available at http://sourceforge.net/projects/oppl2/files/

6.3. IMPLEMENTATION 83

AL |

Transform Axiom Aioms

Eindl Anti-Pattern

3

o Axioms Proceed?

Recommen el Actions

Possile Action Action List

Select an action

Figure 6.4: Apero as a plug-in in Protégé

e JLatextMath 0.9.1 to give a display of formula as mathematic symbol in
Latex. It will help users to understand how to describe an antipattern
detection.

The last two above has been bundled together with Apero implementation.
The implementation of Apero itself is only a Jar (Java Archive) file that is exe-
cutable only in Protégé. All compiled files in java classes and configuration file
are archived in the Jar file that we name it as org.upm.apero.jar. In order to be
recognized by Protégé, we have to put inside the folder plug —ins in the Protégé
installation folder. Apero has been tested on Windows system with Protégé 4.0
or above.

The figure 6.4 is appearance of Apero in Protégé at the first time Protégé
loaded. We will find Apero in a window-tab of Protégé. Apero also can be ac-
cessed from the Protégé menu [Tabs >Apero| or [View >Ontology Views >Apero]
(see figure 6.5 and 6.6).

6.3.2 Antipattern Implementation

Implementation of an antipattern is started from its configuration (see subsec-
tion 6.2.1). Configuration in Apero is provided as a java-properties file (see the
Figure 6.7). Content of this file is a set of lines containing [variable Name] =
[variableV alue]. Every non-optional parameter must be exist in this file.

Tthe source of JLatextMath 0.9.1 is available at

CHAPTER 6. APERO PLUG-IN

ntology 11756779

File Edit Ortologies FReasoner Tools Refactor | Tabs View Window Help

<> |® Ontolagy! 1 TEETTITE ol (Fitp e Active Ortology

Ertities:

" hctive Ortology | Erifies | Classes | Ohject Propertie:

v
v
v Claszes
v
v

Object Properties
Transform &xiom Axioms Data Properties
Eind Anti-Pattern R s Class Matrix e
O tc v Indivicusls
Mo

Property Matrix
e RY 4
Lirt Roll

¥ Apero
DL Guety

v OPPL
Explanation
TEst

Create new tab...

Delete custom tabs.

Export it tak...
Recammended Acti R

Import tab.
Possible Action

Select an action Store current layout

Reset selected tab to default state

Figure 6.5: How to access Apero from menu [Tabs] in Protégé

‘www.owl-ontologies.com

intology 117567797 5.0wl (htt) intology1175677975.0wl) - [D:

File Edit Ortologies Ressoner Tools Refactor Tabs | Wiew Window Help

<> ‘@ Ontology1175677975 0wl (hig it owl-ortol| C18SS views [

Data property views r

Of
Indivicual views »

Misc viewes 3

[ctive Ortology | Efties | Cisces

Transfarm Axiom Agioms Ohject property wisws — » I

Ontol 3 A
Mumber of &xiom: 0 S e |_

[i DL matrics
Mo

Find Anti-Pattern

Explanation

FaCT-++ Rendering

Imported ortologiss

Lint Roll

Manchester syntax rendsring
Mavigation subject

Mavigation view

QPPL

OPPL Macros

WL functional syrtasx rendering
CWALACL rendering

Recommended Actions CAALYiZ Imports Graph

Possile Action St Ontology annotations
Select an action : Ontology metrics I
kFino Atter] ROF XML rendering
Rules
Selected entailments

Figure 6.6: How to access Apero from menu [View] in Protégé

6.3. IMPLEMENTATION 85

OPPLFolder=0PFL

rumber1£Group=3

groupl.
groupl.
groupl,
groupa.
groupz.
groupz.
groupi.
groupl.
groupd,

namne=DL4F

desc=Detectable Logical AntiPatterns

remark=These antipatterns represent errors that DL reasoners can detect.

namne=CLAP

desc=Cognitive Logical AntiPatterns

remark=These antipatterns are not necessarily errors but describe common templates that ontoloy dewvelope
name=Guidelines

desc=Guidelines

remark=Guidelines represent cowplex expressions used in an ontology component definition that are correc

nunber0fPattern=29

patternl.name=4T0-1

patternl. formula=C_1 ‘\\sgsubseteq ‘\exists R.(C_{2Z1} ‘\sSqgcap ... “\sSgcap C_{2n}); Disj(C_{21i},C_{23}):
patternl,desc=ind Is Ot

patternl. type=lint

patternl. lintQueryClass=4AT01 Query

patternl.mmberOfdction=2

patternl,actionl.nane=Replace By Disjunction

patternl.actionl.lintClass=4I01 Actionl

patternl.actionl.remark=It will replace the logical conjunction by the logical disjunction
patternl.actionZ.name=Conjunction of Two Existential Restr.

patternl.actionZ.lintClass=4AI01 Actioni

patternl.actionZ.remark=It will replace the logical conjunction by the conjuntion of two existential restrictio
patternl. group=DLAT

patternZ.name=AT0-2

patterni. formula=C_1 ‘\\sgsubseteq (C_{Z1} “\sqgcap ... \Asgcap C_{iZn}); Dis)(C_{&i},C_{&3}):
patternZ. desc=ind Is O

patternd, type=lint

patternd. lintfueryClass=4AI02 Query

patternz.mmberifiction=1

patternZ.actionl.name=Replace By Disjunction

patterng.actionl.lintClass=4AT0Z Actionl

patternd,actionl.remark=It will replace the logical conjunction by the logical disjunction
patternd., group=DLAT

patternd.name=MIZ

patterni. formula=C_1 ‘\\sgsubseteq (%\geq 0 R.\\top):

patterni.desc=Min is Zero

patternld. type=oppl

patternd.oppliueryPrefixn=MIZ prefix.txt

patternd, mumberifiction=1

patternd.actionl.name=Remove thiz Restriction

patterni.actionl.query=NIZ l.txt

pattern3.actionl.remark=This restriction has no impact on the logical wmodel being defined and can be remowed.
patternd, group=Guidelines

patternd.name=0ILTI

patternd. formula=C_1 ‘\\sgsubseteq*+ C_Z; C_1 “ysgsubseteq “\forall R.C_3; C_Z ‘‘\sgsubseteg ‘hforall R.C_4; Disj
patternd. formulabetail=Y\begin{array} {1} %34 %% C_l Y\agsubsetegq*+ C_Z; C_1 “A\sgsubseteg %\forall R.C_3; C_Z %
patternd, desc=0nlyness Is Loneliness With Inheritance

patternd, type=lint

patternd. lintQueryClass=0ILWI_Query

patternd.mmberifiction=1

patternd. actionl.namne=Remove the parent class and add two logical disjunction
patternd.actionl.lintClass=0ILWI_Actionl

patternd,actionl.remark=To solwe this anti-pattern, the ontology developer should follow the 0IL recommendation

Figure 6.7: A Java-properties file

86 CHAPTER 6. APERO PLUG-IN

In previous chapters, an antipattern could have more than one detection type.
For instance, AIO has two detection types (see 5.1 and 5.2). We consider it in
Apero as two different antipatterns. Hence, we use numbering on their name to
keep the original antipattern. Our research has defined three types of antipattern,
thus we name them in Apero as DLAP, CLAP and Guideline.

The current implementation has 29 antipatterns consisting 4 OPPL and 25
Lint-based antipatterns, distributed with 20 antipatterns in DLAP, 2 antipat-
terns in CLAP and 7 antipatterns in Guidelines. An antipattern is configured
according to our design in Table 6.2 and 6.3. In the file, we found it with ad-
ditional prefix pattern[i] where [i] is a sequence number. We use dot symbol to
separate antipattern sequence and its parameter. We also use this for the group
of antipattern.

In the Figure 6.7, we have MIZ as example of OPPL-based antipattern. The
Code 45 and 46 are content of file MIZ prefix.tet and MIZ_1.txt, respectively.
Those file must be exist in the folder OPPLFolder parameter which is OPPL.
The first file exactly represents the formula of MIZ (see 4.5) and formula pa-
rameter, while the second file represents the recommendation formula (see 4.6).

?c1:CLASS,
?r : 0BJECTPROPERTY
Select
?7cl subClassOf ?r min O Thing
Where 7cl != Thing

Code 45: File MIZ _prefix.txt

begin
remove 7cl subClassOf ?r min O Thing
end;

Code 46: File MIZ_1.txt

A Lint-based antipattern implementation is programmable with Java pro-
gramming language. The figure 6.8 displays a UML class diagram (without
stereotype ¥) of the implementation. We provide OILWI antipattern as an exam-
ple. According to the configuration, OILWI has a detection class OI LW I_Query

http://forge.scilab.org/index.php /p/jlatexmath/downloads/
tGraphically, a stereotype is rendered as a name enclosed by <> and placed above the
name of another element. In addition or alternatively it may be indicated by a specific icon.

6.3. IMPLEMENTATION 87

OWLAPI APResult <] PairLintAPResult
BetX{) : Vector<Object>
OW LAXIom [Gre=smsmsima LinkedList<OWI1Axiom> get Y[} Pai rOPPLAPReSU"I
OWLAxiomChange - E e
OWLReasoner LintAntiPatternQuery
findAxiomn{
OWLOntology | <7 e
M ana g e r OWLOntology) : Vector<APResuli>
owisrcon | T - [——————
OWLOntology V
- OWLFunc
€ smmna getAllDescendent{
OWLOntology,
Set<OWLOntology>,
A el & : OWILClass) - Set<OWLClass>
e - ;
ge'mwlh_clionljsl(avme
e [<antipattern>_Action? |
Vector<Object>) : List<OWLAxomChange>

Figure 6.8: A UML Class Diagram Lint-based Antipattern implementation

and an action class OILW I _Actionl. If an antipattern has more than one pos-
sible action, it also has more than one action class. The class name is arbitrary.
Two antipatterns probably share the same action, then they can use the same
class.

A detection class must implement the following methods : §

o findAxiom(OW LReasoner, OW LOntologyM anager, OW LOntology) from
interface LintAntiPatternQuery.
OW LReasoner is a reasoner implementation that may be used by a devel-
oper for a certain purpose. As an exchange of using reasoner, additional
response time may be applied. OW LOntologyM anager is a class that en-
ables the developer to manipulate an ontology. OW LOntology represents
the current ontology.

e getOW LActionList(OW LDataFactory, OW LOntology, Vector < Object >
) from interface Lint AntiPatternAction.
The purpose of using OW LDataFactory is to create new axioms and
Vector < Object > is a representation of binding variables.

Both methods represent implementation of the box findAxiomByLint and
GetOW LActionList ByLint on the figure 6.2 and 6.3, respectively. Vector of

$This is a term in Java programming language that means a procedure or function.

88 CHAPTER 6. APERO PLUG-IN

EUnl-:!Il:-uwll'J.SsTm 75.0ml (http:! /www.onl-ontologies.con,/Ontology1 17567 1975.0ml) - [D:ontology'\debug'hy drOntology v 1.owll =10] x|
Fle Edt Onlolges Reasansr Toss Refeclor Tabe View Window Help
<3| o> | | @ Ontolomy! 175677975 owl (Hp v = ComiOntolagy! 1 TAET7A75) ~ | @
([Actve Oridogy | Enttes. | Classes. | Otiect Progertes | Dola Properiles | iolvidunls. | #cro [GFPL
[Abata L
Transtorm Axom itens for Pallzm OLW (riymisss is Lansiness Vilth Inherterice)
= pidiange e Murmiaer of axiom - 1 Patten Formuta & () £7 Oy B VRO T VRO, Disg{ Oy s 2 3 cickheretozse ine ditsil of formus
AP =
o | sons =
[oo ' @ Alnurera $UBCIassOr Laguna
4 B L) @ Laguna subClassOf Aguas_Cluietas_Maturales
~[J EtRez,
B GA(EH] @ alpufera subClassOf es_alimentada only Aguas_Marinas
[smeo @) @ Aguas_Quietas_Naturales subClassOf es_alimentada enly Aguas_Corlentes_Naturales
i 3 ';3;:;; @ Aguas_Continertales disjeintWith Aguas_Marinas 5 B vl
[pesen @ aAguas_Corrientes_Naturales subClassOf Aguas_Corrientes
¥ 0LaP @ Aguas_Corrientes subClassOrf AQuas_Supemcialzs
118 :g-‘zgi @ Aguas_Superficiales subClassOf Aguas_Continentales
D). %0 6 © Alhufera subClassOf es alimentada exactly 1 Thing
[oty 1
0w e
[ueet @ | | Fecommended Actions
ﬂ LEvie-2 (1) Possbie Action Aetion List
LBVEL (1) e
[Lewera ey T ———— Remove @ Aguas_Cuietas_Naturales subClassOf es_alimentada enly Aguas_Corrientes_Naturales
the parent class and sdd b logoal disiun = = = = =
[0 wewpa 78 Add D AQUas_CUIBTAS_NalUrales subClassOf e5_alimentaca enly (AQUas_COrmentes_Naturalies
3 j‘l LIEVAR-2 (1) aF Afuas_hMannas)
WO ()
0 ece 9
7 Eap =
R o 0 -
0 s=0.0 e
[mcerd o Ta sabve this anti pattem, the orclogy sevsinpsr
3 ‘shauid follrw the OIL recommenstian spply an the |
D) macar.2 (o) perent class 2. Because a.chikl chss nhert ol
L0 EtRop the aohams of s parent, allthe auiloms of the chid |
[1 scser iz shautd spply an the parent oo, 1 ()
¥ 2 ciap
3 B SCE(5) | Reset Actian List | | Executs
S5 (0 =

pacternd. neme-0ILKL

pacternd. formula=c_L Y\sqaubdeceqs+ C_Z; C_L \\Sqsubseteq \\lorall R.C_3; C_Z \\sgsubsereq)\Corall R.C_4; Dis){
patternd, FornulaDetail=\ibegin{areay) {1} W1L 4\ C_L AL + 023 €_1 \Y Viforall R.C_3: C_2 4\
patternd, descanlyncas Is Loneliness With Inheritance

patternd. type-lint

patternd. lintQueryClase=0TLUI_Guery

patternd. numhe e0FACtion=1

patternd. actionl.nenesRenove the parent class and add two logical disjumetion

4 pacternd.actionl. lintCless=0ILWI_Actiont

10pacternd. actionl. renark=To 2olve thiz enti-pactern, the ontology develeper should follow the OIL recommendation
11 patternd. geoup=DLAP

e e =

@

Figure 6.9: A mapping antipattern configuration to the GUI

class APResult is output of detection class. Class AP Result has the matched
axioms. If we proceed a OPPL-based antipattern, then we will get instances
of class PairOPPLAPResult (sub class of APResult) that also has binding
variables completing the matched axioms as a pair. Meanwhile, processing a
Lint-based antipattern, we will get instance of class PairLintAPResult (sub
class of AP Result) that also has binding variables namely vector of variable value.
The different between class PairOPPLAP Result and PairLint AP Result is the
representation of binding variables like we discuss in design section.

In order to help a developer of antipattern, we provide a class OW LFunc that
has a lot of functions to solve some problem, for instance to get all subclasses of
a class and get all axioms performing disjointness between two classes. You find
the complete list of function in the Appendix A.

The figure 6.9 shows how every parameter in configuration displayed in the
Apero. We have several remarks as follows:

e Parameter number 1, 4 and 10 will be displayed directly at the position
shown in the figure.

6.3. IMPLEMENTATION 89

e Apero will render parameter number 2 becoming latex symbol

e Parameter number 3 yields a hyperlink. If the ontology developer clicks on
it, a new window will appear displaying latex formula with a bigger area
than parameter number two. Parameter number 3 does not exist then that
link will not exist either.

e Parameter number 5 and 6 will give output and put it into the table as
shown on the figure, no matter what type of implementation.

e Parameter number 7 remunerates number of action and each name of action
(parameter number 8) will be displayed.

e Parameter number 9 gives output and put it into the list.

e Parameter number 11 will categorize this antipattern and perform a tree.

6.3.3 Transformation Process Implementation

This process is very important because it is potential to emerge an antipattern.
The figure 6.10 is the interface for user to enable the transformation. We have the
OIL antipattern as an example here. Before transformation, we do not have OIL
antipattern. The ontology developer starts this transformation by pushing the
button [Transform Axiom|. Apero will display all possible axiom transformation
in a table. Every row in the table consists of a number, list of axiom completed
with its actions, and a check box [Proceed] that indicates whether you want to
transform this row or not. An original axiom is begun with an action REMOV E,
while a result axiom is begun with an action ADD.

A new annotation comment axiom ” Generated by Apero Plug-in” appears to
indicate this axiom came from the transformation process as an acknowledgment
for the ontology developer. The figure 6.11 shows the new axioms with different
icon of annotation since they have an annotation.

After transformation, Apero successfully detects the OIL antipattern (see
figure 6.12). Clearly, three axioms from the instance of antipattern come from
the equivalent axiom before transformation process. Finally, it is necessary to
create new version of ontology since both ontology before and after transformation
are not the same.

6.3.4 Detection Process Implementation

The figure 6.13 tells how the ontology developer runs a detection process. He has
to click button [Find Antipattern| to display dialog [Find Antipattern]. On this
dialog, he can select some antipatterns that he wants to observe. [Ellipse time]
indicates the processing time to run the process. If he only wants to display the

90 CHAPTER 6. APERO PLUG-IN

Transform Axiom | Azioms for Pattern A10-1 Cand ks Cr)
o £ ettoen Humber of axioms - 12
¥ & Guidelines
-[1 poc @ Ho Asioms Procesd?
0] uE ey 0 Remove @ Zana_Humeda equivalentTo Humedal ||
[ecRe3 and es_inundada only Aguas_harinas
-0 ca and es_inundada only Aguas_Superficiales
[smaLo) and sufre_tescarga only Aguas_Subterraneas
0wz and es_inundada min 1 Thing
% O3 (3) Attt @Zona_Himeda subClassof Humedal
-0 pes 3
V-G DLAP @ Al Zona_Humeda subClassOf Humedal comment "Senerated by Apero Plugin®
0 a01(2) Added @ Zona_Humeda subClassOf es_inundada only Aguas_Marinas o
B M2 el Zona_Humeda subClassOf es_inundada only Aguas_Marinas comment "Generated by Apero Plugin”
ol (0 -
--ijvﬁgm-) Adid @ Zona_Humeda subClassOf es_inundada only Aguas_Superficiales
[ve@ Add Zona_Humeda subClassOf es_inundada only Aguas_Superficiales comment "Generated by Apero Plugin®
% Em; Ei Al @ Zona_Humeda subClassOf sufre_descarga only Aguas_Subterraneas
[uBARLA (1) Add Zona_Humeda subClassOf sufre_descarga only Aguas_Subterraneas comment "Generated by Apero Plugin® [
-0) uEwpL2 (D) add ®Z0na_Humeda subClassOf es_inundada min 1 Thing
% Em;; 2; Add Zona Himeda subClassOFf es inundada min 1 Thing comment 'Generated by Apera Plugin®
0 vov @ " Remove @ Nacimiento equivalentTe arigina enly (Arroya =
-0 eo @ 4] [T
[eap @
-1 so @) Refresh | | Transtorm |
-] sapm
M4 wmemam 4 o

Figure 6.10: Before transformation

Annot. 5 for SubClass axiom B x| L |

@ Zona_Humeta subClassOf Humedal

quivalent classes

Annetations Superclasses

comment ' Humedal

i

"Generated by Apero Plugin® @ surgencia_Natural

@ es_inundada only Aguas_Marinas

@ es_inundada only Aguas_Superficiales

@ sufre_descarga only Aguas_Subterraneas
@ es_inundada min 1 Thing

Inferred anonymous superslasses

@ es_transvasada seme Canal Aguas_Continentales
@ es_distribuida some Distribucién

@ es_distribuida some Canal_Aguas_Continentales

@ Aaguas_Corrientes
or Aguas_Quietas
or Aguas_de_Transicién
or Surgencias -

Figure 6.11: An annotation acknowledgment

Axjoms for Pattern CIL (Onlyness |5 Loneliness)

Mumber of sxiam: 1 Pattern Formula @ € C VR.Ca Oy C VR.Cy Disi{ o, Cy); Click hereto see the detail of formula

Mo Axioms Pracesd? |
" ®2Zona_Himada subClassOf es_inundada enly Aguas_Marinas

@ Zona_Humeda subClassOf es_inundaca enly Aguas_Superficiales

@ Aguas_Continentales disjointWwith Aguas_Marinas |
@ Aguas_Superficiales subClassOf Aguas_Continentales

@ Zona Humeda subClassOf es_inundada min 1 Thing

Figure 6.12: After transformation

6.3. IMPLEMENTATION 91

[EOntalogy1175677975.0wl (hitp://www.owl-antologies.com/Ontalogy 117 ontology'debug\hys _{of x|
Fle Edt Ontoogies Ressoner Tooks Refactor Tabs View \Window Help
<a| > | [© ontouy1175677975 owl (rttp v, owl-ortologes comiontology 175677575 owl) - &]
| Active Ortology | Ertities | Classes | Obiject Properties |/ Data Properties | individuals | Apero | OFPL
[e
| Apet
Transtorm Axiom Axioms
od Ao Nuber of axion
3 Find Anti-Pattern x|
= o Proceed?
Anti-Pattern st Elapse Time : 05
[mio-1 =i 0%]

Ai0-2

oL

ol

¥l e

[UEW-1

[uBmn-2

UEWPL1

[l uBnmL2

UBAP-1 -

Select Al | | Select tone | [] Show enly applied petterns Bun Stop Close

Actio

Log

Possile Action Action List

Select an action

Figure 6.13: Before detection process

applied antipattern, he has to click check box [Show Only applied patterns|. Text
area [Log] will record all activity list of this process. Button [Run] will start the
detection process, while button [Stop] will stop detecting.

After finishing detection, the dialog will show a message completeness and
Apero will update the tree of antipatterns at the left side of the window (see
figure 6.14). Every antipattern name will be displayed together with the number
of instances found in the ontology.

The ontology developer may want to observe an antipattern, for example :
SMALO antipattern. He can click on an antipattern in the tree of antipattern. As
the result, Apero will display all instances of SMALO antipattern in this ontology.
Apero also will display all available information of the antipattern configuration.
If we crosscheck every instance to pattern formula, they should match each other
with a certain substitution of variables.

6.3.5 Execution Process Implementation

The figure 6.16 and 6.17 describe an execution process. We use AIO as an
example here. After observation, the ontology developer realizes that there are
something wrong in the ontology. Two instances of AIO antipattern have proved
it. A recommendation is built once he selects an instance to be processed by
marking on the check box [proceed| column in the table. He may want to see
the compound recommendation by selecting more than one instance. A possible

action will trigger a recommendation (see the figure 6.17). A description of the

92

CHAPTER 6. APERO PLUG-IN

Transform Axiom

Axioms:

Eind Arti-Pattern

(= antiPatiern
¥ Guidelnes
[poc o
-1 UE (M)
-] ECR(3)
[smaLo @
-] WIZ (1)
[pos 3
-1 pes (@
T oLep
- a0 @
[mio-2m
-] ol ¢oy
- ol ¢ty
[uem
[UBM (2)
[uemaz 1y
- uBAPI1 (13
1 uBwrz o
-] uBmIP-1 (13
-] UBAIP-2 ¢13
[wow m
-] EBD (8
[esn
- =D &)
[a0
-] MMCAR-1 (0)
[Mmcar-2 (m
] BCRWIP (3)
-] SOSER(2)
V(& cLap
[308
) sos

Mo

Anti-Pattern fist :

Ellapsze Time: 25

L |Checking pattern 27 of 29: MIZ (Min is Zero)

230123 |

Log:

Pattern MIZ is found

Checking pattern 28 of 29: DOS (Distriautivity On Subclass)

Pattern DOS is founc

Chicking pattern 29 of 23 - DCS (Disjoirtness of Camplement on Subclass)
Pattern DCS is found

@ Process has completed in 2 seconds) |—

Recammenced Actisr

Possible Action

Select an action

Action

Remark

Figure 6.14: After detection process

Transform Axiom

Eind Arti-Pattern

Mumber of axiom : 2

L= ArtiPattern
V12 Guidelines

~Axioms for Pattern SMALO (Some Means At Least One)

Pattern Formula

G CIARCxC C (> 1R.T);

Mo

Axioms

[pocm
-0 uE ()
[ecren
-0 eam

cH ﬁALOQ_)_I
[mzen
[pos @

[oes 3y

V-l pLap

[a2
- 020
O oL@
[ol (1)

D e

1| @ Estern subClassOf esta_proxima seme Desembocadura

@ Estern subClassOf estd proxima min 1 Thing

@ Rambla subClassOf es_originado seme Tarrente
@ Rambla subClassOf es originado min 1 Thing

Figure 6.15: SMALO antipattern

6.3. IMPLEMENTATION

93

Axioms for Pattern Al0-1 (And Is Or)

Nurmber of axiom 2 Pattern Formula © () © IR 1 o 1 Chy Js Disi{ Cai, Ol
o Axioms | proceear
WAGUES UUETES_NaTUraies SURCTassur Aguas_WUIEE -
@ Aguas_Quietas subClassOf Aguas_Superficiales
@ aguas_Superficiales subClassOf Aguas_Continentales
@ Mar subClassOf Aguas_Marinas
@ Aguas_Quietas disjeintWith Aguas_de_Transicion I
@ Marisma subClassOf Aguas_de_Transician
@aguas de Transicion subClassOf Aguas Superficiales
2| @ Ponar subClassOf comunica some [Aguas_Supterransas
and Aguas_Superficiales) I
D Aguas Subterraneas disjeintWith Aguas Superficiales ~
7T []
Recommended Actions:
Possible Action Action List
SE A remove @ Cafiio subClassOf comunica some (Albufera
Replace By Disjunction
Conjunction of Two Existertial Rest Ang o
onjunction of Twa Existential Restr. and Mﬂﬂﬂma)
Add @ Cafio subClassOf comunica some (Albufera
or Mar
or Marisma)
Remark Remove @ Ponor subClassOf comunica some (Aguas_Subterraneas
It wil replace the logical canjunction by the logical and Aguas_Superficiales)
distinchon Add @Ponor subClassOf comunica seme (Aguas_Subterraneas
or Aguas_Superficiales)
Figure 6.16: Execution process 1
Recommended Actions
Pozsible Action Action List
i—e'er’ a";“[‘f": o Remove @ Ponor subClassOf comunica some (Aguas_Subterraneas
e and Aguas_Superficiales)
Conjunction of Two Existential Restr
Add @ Ponor subClassOf comunica some Aguas_Subterraneas
A @ Ponar subkClass Of comunica seme Aguas_Superficiales [x]
[Femave

Remark :

it will replace the logical corjunction by the
conjurtion of two existential restrictions

Reset Action List

Figure 6.17: Execution process 2

chosen action is given by the text [Remark].

A recommendation is composed by an action list that contains the list of

axiom changes. The ontology developer needs to validate every axiom change
with the domain expert. Probably, he may need to remove an axiom change. He
also can reset the recommendation to the initial condition by using the button
[Reset]. After he is sure, he can push the button [execute| that will execute
all axiom change and permanently update the current ontology. The effect of
execution on the example of AIO is described on the figure 6.18 and 6.19. The
final step, he need to create new version of ontology because of this execution.

94 CHAPTER 6. APERO PLUG-IN

Equivalent olasses

“'Sumidero

Superslasses
*Hidrénime_Puntual

@ comunica seme (Aguas Subterraneas
and Aguas_Superficiales)

Inferred anonymous superclasses
parte_de only Rio
“origina some Corriente_Subterranea
Yalimenta some Acuifero

Ponor

D bocadura

Figure 6.18: Description of class Ponor before execution

Equivalent classes

' Sumidero

Superclasses

D Hidrénime_Puntual

@ comunica some Aguas_Subterraneas
‘comunica some Aguas Superficiales

Inferied anonymous superclasses
parte_de enly Rio
origina some Ceorriente_Subterranea
¥ alimenta seme Acuifero
Ponor

Figure 6.19: Description of class Ponor after execution

6.4 Debugging Strategy Based on Antipatterns

An initial study about debugging strategy based on antipatterns has been estab-
lished in [4] as shown in the Figure 6.20. All antipattern appeared in the figure,
are the list of antipattern in [4].

New antipatterns have been discovered and a debugging strategy must be
revised. Users can use Apero plug-in to apply the strategy easily and the strategy
itself will guide users how to debug an ontology optimally. Antipattern may
lead to another antipattern after executing a recommendation. It triggers a
dependency among antipattern in the strategy.

The figure 6.21 displays a new debugging strategy six steps. The first step of
strategy follows the one in the former debugging strategy. Applying SOE will af-
fect removing a class. It means that our debugging will be easier since if the class
is unsatisfiable then the number of unsatisfiable class decreased by one. The sec-
ond step is to check Guidelines that use semantic equivalences between formulas
in a recommendation. They are the DCS and DOS antipatterns. Applying these

6.4. DEBUGGING STRATEGY BASED ON ANTIPATTERNS 95

Resolve Terminological Problem SOE J

Check the use of =

ind a Root Class to debug

v |
[(1-che | e O ad "0 gg b poue

[3. Check Role Inheritance]

w 4. Check Class Hierarchy] /

Figure 6.20: Debugging Strategy in [4]

antipatterns will give positive effect of antipattern finding for the next step. The
third step follows the second of the old strategy but, there are new two additional
antipattern namely EAD and UIE antipattern.

At the fourth step, there are the rest of DLAP, SOS and ECR. The sequence
in this step is optional. All antipattern can be combined as presented at the
figure. A new instance of antipattern is possible to be detected after several
combinations. At some point it will stop and you may continue to the next step.
Users can take freedom of DLAP antipatterns as stopping criteria because the
existence of DLAP implies there is at least one unsatisfiable class. The fifth step is
to remove superfluous axioms possibly detected by SMALO and MIZ antipattern.
We keep this axiom on the previous step because of performance reason. Some
antipatterns (OIL and OILWI) in DLAP need minimality property that can be
supported by one of axioms detected by antipatterns in this step.

At the sixth step, users probably need to know whether the ontology has
already been free of unsatisfiable class by classifying ontology. If there is no
unsatisfiable class, debugging process is done. Otherwise, users need to check
on the transformation dialog whether there is a suggestion or not. If there is
a suggestion, probably users need to clarify whether their modeling is correct.
Users may decide to stop if DLAP category is no longer detected with one note
which is a potential error or inconsistency that may appear in the future.

If reasoner detects an unsatisfiable class but Apero detects no DLAP an-
tipattern, then new antipattern must be discovered. The ideal condition is all
antipatterns in the world have been discovered. Surely, participation of reasoner
to classify the ontology is no longer needed.

96

CHAPTER 6. APERO PLUG-IN

Resolve Terminological Problem SOE
4

4
=
. 4

Check the rest of DLAP, SOS and ECR

ot)

EE

i

Remove superfluous axiom

Classify and Transform if necessary

Figure 6.21: New Debugging Strategy

[

Chapter 7

Evaluation

This chapter presents the evaluation of the Apero plug-in. The evaluation shows
that the Apero plug-in works as expected helping ontology developers to debug
an ontology.

7.1 Evalution Setup
The evaluation is done in a computer with the following hardware and software:
e CPU : Pentium Dual Core T250 2.00Hz.

RAM : 904MB

Storage : 18GB

Microsoft Windows Server 2003 SP 2

Java : Java Development Kit 1.6

Protege : Protege 4.0

SWOOP 2.3 as debugging tool for comparison purpose

7.2 Evalution Test Case and Plan

We prepare some ontologies as test cases to help us evaluating the Apero plug-in.
We also design them in a way so that they confirm with the work objectives
defined in the chapter 3. The table 7.1 displays the list of ontology used for our
evaluation.

We use a simple scenario to run test cases according to the figure 6.1 that
represents a global strategy for ontology debugging. Classifying an ontology by

97

CHAPTER 7. EVALUATION

Ontology Domain Ontology | Languages Total Number of
name references number of | unsatisfiable
classes classes
Computer_Science | University [1] english 29 9
organisation
Tambis_full bioinformatic [19] english 395 144
Sweet_Numeric Earth and [17] english 2364
Environment
HydrOntology hydrology [22] spanish 159

Table 7.1: List of ontologies

reasoner before running Apero is not needed, except if users want to highlight
some classes that are known unsatisfiable. However, users must remember that
classifying a big and complex ontology is a time-consuming task. Therefore, we
may skip two steps on the figure, namely [choose root of unsatisfiable class| and
[compute justification and inspect class definition].

As part of the scenario, we need to check if new formula representation will be
effective to show an antipattern. We need to remember tha a given latex formula
does not drive an instance of antipattern in the implementation directly. In other
words, it only gives visual representation of an antipattern with its instance to
users.

At the end of this evaluation, we expect to get some measurement about
response time and detection result. In order to measure response time of each
debugging, we run test for each ontology three times and take the average as
the result. While measuring response time and detecting antipatterns, we only
take the first cycle of detection without applying transformation rule, although
the transformation rule may lead to more findings. In addition, we apply all
antipatterns listed in this thesis.

Comparison with another debugging tool will show pros and cons of Apero.
We will compare Apero to SWOOP. All test cases above will participate in this
comparison.

7.3 Evaluation Result

The figure 7.1 shows new representation representing better than the old one.
In this example, we use symbol + and without this symbol, it is difficult to
explain to users how the formula is connected to the instance of antipattern.
We give underline on some classes to show C; CT Cy representing Albufera C
Laguna; Laguna E Aguas_Quietas_N aturales with substitution :

o (1 := Albufera

7.3. EVALUATION RESULT

99

EELCE]

Transfor Axiom

Eind Anti-Pattern
L= AntPattern =

Mumber of axiom: 1

Pattern Formula

Axioms for Pattern QILW (Onlyness s Loneliness With Inheritance)

€\ E" CyC) EYR.Cy 0y E YRCy3 Disj(Ch,Cy)s

Click here 10 see the detail of formuls

¥ Guidslines Mo

Axioms

Proceed?

[poc i

-7 ey
-] Ecrez
[l sam
[smaLo @
[Mz
-[pos 3
[s
Vo l=DLap
1 a0
[miozm
-] oLy
[onwagty
0 @
D UEW-1 (2) _: Reco
-0 vemz) [[poe
[UBAPL1 (13
<[] uBwRI2 (03
-1 uBsp- 1)
[uBsp-2 (13
<[] wov oy
[eo @
- EaD (@
[sy <]
-[1 sap
<[] MMCARA (D)
[mmcar-2) -
-] ECRWIP (3) lthe
[7 soser (2 sh
Vol cLap —
S0 soE®
[sos@m ~

Sek
Rer

Ren
Ta
she

o (5 := Aguas_Quietas_Naturales

In addition, the window [Formula detail] that appears after a user clicks the
hyperlink [Click here to see the detail of formula] will give users extra space to

@ Albufera subClassOf Laguna

@ Laguna subClassOf Aguas_Quietas_Naturales

@ Albutera subClassOf es_alimentada enly Aguas_Marinas

@ Aguas_tuietas_Naturales subClassOf es_alimentada ehly Aguas_Corrientes_Naturales
@ Aguas_tontinentales disjeintWith Aguas_Marinas
©Aguas_corrientes_Naturales subClassOf Aguas_Carrientes
@ Aguas_corrientes subClassOf Aguas_Superficiales
©Aguas_Superficiales subClassOf Aguas_Continentales

@ Albufera subClassOf es alimentada exactly 1 Thing

Formula Detail o

CLEY O C) EYR.Cy5 Cs E YR.Oy; Disj(Cy, Cy);

To be detectable, property R must have at least a value, normally specified as existential restrictions,

(minimum) or exact cardinality restriction for that class with a positive number on the cardinality.

Figure 7.1: New formula representation

express any condition more flexible.

The Table 7.2 is a summary of evaluation following the given scenario in 7.2.
The table shows that all test cases are done in less than 30 seconds even for big
ontology Sweet_Numeric. HydrOntology, the complex among test cases, is done

only 3 seconds and we find 18 antipatterns with 45 instances.

Ontology Response time Total Dominant
(second) Antipattern | Instance | Antipattern | Instance
Computer_Science <1 3 4 UEWIP 2
Tambis_full 1 5 42 DOS 27
Sweet_Numeric 27 4 10 SOE 4
HydrOntology 3 18 45 EID,SID,SOE 6

Meanwhile, the Table 7.3 represents distribution of antipattern finding in
all ontologies. Majority of known antipatterns is found in HydrOntology. This
indicate that users of HydrOntology do not have enough knowledge about logic

Table 7.2: Summary of testing result

programming and how to write definition correctly.

100 CHAPTER 7. EVALUATION

No | Antipattern Ontology
Computer | Tambis | Sweet | HydrOntology
Science Full Numeric
DLAP
1| AIO 0 0 0 2
2 | OIL 0 0 0 0
3 | OILWI 0 0 0 1
4 | UE 0 0 0 0
5 | UEWI 0 0 0 3
6 | UEWPI 0 0 0 1
7 | UEWIP 2 0 0 2
8| VOV 0 0 2 0
9 | EID 0 0 0 6
10 | EAD 1 3 0 0
11 | SID 0 0 0 6
12 | SAD 0 0 0 0
13 | MMCAR 1 0 0 0
14 | ECRWIP 0 0 0 3
15 | SOSER 0 0 0 2
CLAP
16 | SOE 0 4 4 6
17 | SOS 0 0 0 1
Guidelines
18 | DOC 0 0 0 0
19 | UIE 0 0 0 1
20 | ECR 0 4 0 3
21 | SMALO 0 4 0 2
22 | MIZ 0 0 0 1
23 | DOS 0 27 1 3
24 | DCS 0 0 3 3

Table 7.3: Detail of testing result

Another phenomena that appears on the Table 7.3 is the significant appear-
ance occurred in Tambis ontology on DOS antipattern with 27 instances. The
large number of instances indicates that users of the ontology need to be trained
about how to write definitions. DOS antipattern may cause an antipattern in
DLAP to be undetectable. Coincidently, it is also be supported by finding of
146 axioms on the transformation dialog (see the Figure 7.2) that has only one
transformation rule almost similar to DOS. Especially for transformation, Users
must confirm the correctness of each listed axiom with the real world, so that

they are sure that transformation is needed.

7.3. EVALUATION RESULT

Mumber of axioms: 146

101

Mo

Azioms

Proceed?

[

&l

1 Remove @ nuclear-dna equivalentTo macromolecular-compaund
and polymer-of some deoxy-nucleatide
and strandedness seme double-stranded
and part-of enly nuclear-chromosome
and polymer-of enly deoxy-nucleotide
and part-of exactly 1 Thing
Add @ nuclear-dna subClassOf macromolecular-compound
Add nuclear-dna subClassOf macromalecular-compound comment "Generated by Apera Plugin®
Addl nuclear-dna subClassOf polymer-of seme deoxy-nuclectide
Add nuclear-dna subClassOf polymer-of some deoxy-nucleotide comment "Generated by Apero Plugin®
Add Ynuclear-dna subClassOf strandedness some double-stranded
Add nuclear-dna subClassOf strandedness some double-stranded comment "Generated by Apera Plugin®
Add P nuclear-dna subClassOf part-of enly nuclear-chromosome
Add nuclear-dna subClassOf part-of enly nuclear-chromosome comment "Generated by Apera Plugin®
Add @ nuclear-tna sub ClassOf polymer-of enly deoxy-nucleotice
Add nuclear-dna subClassOf polymer-of enly deoxy-nucleotide comment "Generated by Apero Plugin”

[[»]

Refresh H Transform |

Close

For equalization, we assume causes of unsatisfiability as

Figure 7.2: Transformation Detection

instance of antipat-

tern. After running all test cases on Apero and SWOOP, we found several things

when debugging all ontologies as follows:

e Apero does not need a reasoner to detect an antipattern, but SWOOP needs

it (Pellet reasoner) to determine whether a class satisfiable or not, and root
or derived unsatisfiable class.

SWOOP only detect causes of unsatisfiability (DLAP in Apero), but Apero
also can detect another potential causes of error on CLAP and Guideline.

Focusing on DLAP and manually we generate root of unsatisfiable class can
be detected on Apero, the Table 7.4 show the detection result. Especially for
HydrOntology, after SWOOP fails to debug, we do not continue comparison
on root of unsatisfiable class.

Ontology Response time (second) Root of unsatisfiable class
Apero SWOOP Protege Reasoner | Apero | SWOOP
Computer_Science <1 <1 5 4 5
Tambis_full 1 5 3 3 3
Sweet_Numeric 27 5 2 2 0
HydrOntology 3 Fail Not continued

Table 7.4: Comparison between Apero and SWOOP

The result on Computer_Science tells us to improve number of antipattern
in Apero. Apero could not detect unsatisfiability of class C'S_Department
(see the Figure 7.3). This is also opportunity to define new antipattern with
helped by another tool such as SWOOP. Meanwhile, detection of SWOOP

102

B swoop 2.3betas

CHAPTER 7. EVALUATION

-100 %]
File Wiew Bockmatks Resource Holder Advanced About
| T | b |l“«ddrESS:Ihttp://‘www.rmndswap.org/ontu\ogles/debugg\ng/umvers\ty.uw\#CS_Depar‘tment LI

A Ontology List

J I show Irherited [Changesi/Annotations [Editable

Concise Farmat | abstract Syntax | ROF(ML | Turtle |

OWL-Class: C5 Department

Unsatisfiable concept

Azioms causing the problem:

1) (CS Department £ - EE_Department)

2) |_(EE Department = (JaffiliatedWith . EE Library))
3) |_Transitiveaffilisted'with

Add | add [F] Add <T: 4) (CS Department = {3affilistedWith . C5 Library))
Add GCT | o Herane 5) |_(CS Library = (Jaffiliated\With . EE Library))
¥ Show Imparts [Glames IPeHet -
Equivalent to:
C.Iass il l Lt Treal L‘Stl a:ﬂ.‘Nothma (Wb
=-(C) Library ;I
i T Cs_Library Disjoint with:
-~ (EIEE_Library EE Department
=5} Person
i =T Faculty Subclass of:
E1T) TeachingFaculty {3affiliatedwith . .8 Library
EHE) Professor Department
~(E) ProfessorinHClora,
i =T student

{C) cs_Student
=-(C} PhoneBoak

(T} FacultyPhoneBoaok
i (C) UniversityPhoneBook
() Researcharea
() Schedule
=4 owl:Nathing
b . AssistantProfessar
@ HCIStudent

F . Lecturer

- @ C5_studentTakingCourses

- Al_Dept !

@ a1student

F . LecturerTaking4Caurses _'LI
| | »
Loalup | [~ &l Oritalogies?

Figure 7.3: Detection of C'S_Department on SWOOP

is better than Apero on Sweet_Numeric because SWOOP fails to load some
indirect imported ontologies that are supposed to be imported by a direct
imported one. SWOOP on this example is able to load 2 of 9 indirect
imported ones. Therefore, SWOOP detects nothing because roots of un-

satisfiable class probably occur in a failure imported ontology.

e SWOOP is powerful to give recommendation by ranking every involved
axioms (see the Figure 7.4) but no explanation is given while Apero gives

recommendation according experience of user.

7.3. EVALUATION RESULT

Alstudent®eet
AssistantProfessor’
C5_Course

Raot

t

C5_StudentTakingCourses
HCIStudentRo%
LechurerRoet

LecurerTaking#Courses

ntology computerscience.owl

J Weights: (Noke! Rank = -W'l * arity + W2 * impack + W3 * usage]

103

=101 x]

Wl (0.9 Wa: 0.7 W3 0.1 Recompute Ranks | [~ Wiew Axiom:

15 Globally

Axioms causing the problem: C5_Department

Erroneous Axioms Arity | Impact |[Usa Rank | Status
1) (CS Department £ - EE_Department) o] o |o.09 [R1[K]
2) |_(EE_Department = (Jaffiliatedwith . EE Library)) |1 ol 4 0.18 |[R][K]
3) _Tramsit\ve(_af‘ﬁliatedwith)_ it] | 1 009 |’ [Q
4) (CS_Department = (JaffilistedWith . C5 Library)) 1 1 5 0.29 |[R][K]
5) |_(CS Library = (3affilistediwith . EE Library)) 1 1 | E] 0.09 ||[R][K]

Figure 7.4: Recommendation on SWOOP

Chapter 8

Conclusion and Future Work

Some work objectives have been accomplished by presentation on Chapter 4, 5
and 6. Moreover, we have done evaluation and confirmed some work objectives
and all hypotheses fulfilled. We have achieved some bullet points of conclusion
in this thesis as follows:

e This thesis has enriched the catalogue of antipattern from 10 antipatterns to
24 antipatterns. Some antipatterns have more than one detection pattern
(AIO, UEWI, UEWPI, UEWIP and MMCaR antipattern). In total, we
have collected 29 antipatterns.

e There are two additional symbols as representation of antipattern, namely
(star) and + (plus). We have seen these symbols as completed DL-symbols
in formulating an antipattern especially to represent transitivity on subclass
(C) and equivalence (=) relation.

e Both chapter 4 and 5 have classified implementation type of antipattern.
The easy antipattern may be classified to OPPL-based antipattern and
the rest must able to implemented by Lint, so we call it as Lint-based
antipattern.

e Apero plug-in has been built to help the ontology developer to debug an
ontology. Apero has implemented all antipatterns in this thesis and one
transformation rule. Response time to debug an ontology on test cases is
fast and there is no dependency to a reasoner.

e An antipattern has been a remedy to overcome difficulty in ontology de-
bugging. In addition, a proposed debugging strategy is able to guide the
ontology developer to solve inconsistency problem.

105

106 CHAPTER 8. CONCLUSION AND FUTURE WORK

e By comparing between Apero and SWOOP, overall Apero proposes a better
solution than SWOOP in ontology debugging for some reasons. Apero is
more stable because Apero does not depend on a reasoner, unlike SWOOP
does need a reasoner that somehow may not worked. Apero is able to de-
tect not only unsatisfiability class but also modeling error and guideline.
However, if reasoner works well, in some cases, SWOOP able to show num-
ber of unsatisfiability class better than Apero that depends on catalogue of
antipattern.

However, from our limitation and conclusion, this thesis also leads us to some
future works as follows:

e There are still a lot of antipattern that we need to identify. The catalogue of
antipattern must still be improved. So far, we found an antipattern during
debugging ontology manually. We also expect someone will discovery new
antipatterns in better way.

e We expect in the next research that someone will consider naming conven-
tion of antipattern.

e Implementation of Lint-based antipattern is Java-based. There is always
opportunity to improve an implementation such as inefficient code and more
comprehensive testing to ensure validity of implementation.

e We suggest to debug a huge ontology to test the reliability of Apero. It is
intended to find a bugs and idea for improvement.

e Discussion about debugging strategy based on antipatterns must be contin-
ued. It could be supported by performing evaluation by real user. It also
opportunity to have automatic debugging strategy on Apero in a certain
way.

e After introducing one transformation rule, for the next research, this topic
may be exploit further to get new transformation rules. A next version of
Apero is expected to have generic implementation of transformation.

e Implementation Lint-based antipattern exploits OWL API. It is a good idea
to try implementation by exploiting SPARQL Query Language for RDF.

Bibliography

Reasoning for Ontology Engineering and Usage - ISWC 2008.
http://owl.cs.manchester.ac.uk/2008 /iswc-tones/. [cited at p. 98]

S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F.
Patel-Schneider, L.A. Stein, et al. OWL web ontology language reference. W3C
recommendation, 10:2006-01, 2004. [cited at p. 49]

Luis Manuel Vilches Blazquez, Miguel Angel Bernabé Poveda, Maria del Carmen
Sudrez-Figueroa, Asuncién Gémez-Pérez, and Antonio F. Rodriguez Pascual. Town-
tology & hydrontology: Relationship between urban and hydrographic features in
the geographic information domain. In Ontologies for Urban Development, pages
73-84. 2007. [cited at p. 8]

Oscar Corcho, Catherine Roussey, and Luis Manuel Vilches Blazquez. Catalogue of
anti-patterns for formal ontology debugging. page 11, 2009. [cited at p. 7, 94, 95, 123]

Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez, and Ivan Perez.
Pattern-based owl ontology debugging guidelines. page 11, 2009. [cited at p. 13, 14,
75, 124)

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, second edition edition,
2001. [cited at p. 32]

Mikel Egana, Robert Stevens, and Erick Antezana. Transforming the axiomisation
of ontologies: The ontology pre-processor language. In: Proceedings of OWLED
2008 DC OWL: Experiences and Directions, page 10, 2008. [cited at p. 11]

Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justifications in
owl. In Description Logics, 2009. [cited at p. 5]

Sattler U Horridge M, Parsia B. Laconic and pricise justifications in owl. In: Proceed-
ings of Tth International Semantic Web Conference (ISWC), Karlsruhe, Germany,
LNCS 5318(323—338), 2008. [cited at p. 6, 8, 75]

http://oppl2.sourceforge.net/grammar.html. Oppl grammar. [cited at p. ii, 111, 112,
114]

107

108 BIBLIOGRAPHY

[11] http://protege.stanford.edu/. The protégé ontology editor and knowledge acquisi-
tion system. [cited at p. 10]

[12] http://www.cs.man.ac.uk/ iannonel/lintRoll/index.html. Lint detection for owl on-
tologies and related protégé plug-in. [cited at p. 14]

[13] http://www.w3.org/TR/owl guide/. Owl 2 web ontology language guide, 2004.
[cited at p. 9, 11]

[14] Luigi Tannone, Mikel Egana, Alan Rector, and Robert Stevens. Augmenting the
expressivity of the ontology pre-processor language. In: Proceedings of OWLED
2008 DC OWL:Experiences and Directions, page 6, 2008. [cited at p. 11, 26]

[15] Sirin E Cuenca-Grau B. Kalyanpur A, Parsia B. Repairing unsatisfiable classes in
owl ontologies. In: Proceedings of 3rd European Semantic Web Conference (ESWC),
Budva, Montenegero, LNCS 4011(170-184), 2006. [cited at p. 6, 8, 75]

[16] Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vasconcelos. A fine-
grained approach to resolving unsatisfiable ontologies. Web Intelligence, IEEE /
WIC / ACM International Conference on, 0, 2006. [cited at p. 7]

[17] R. Raskin and M. Pan. Semantic web for earth and environmental terminology
(sweet). In Semantic Web Technologies for Searching and Retrieving Scientific Data,
2003. [cited at p. 98]

[18] A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. Owl pizzas: Practical experience of teaching owl-dl: Com-
mon errors & common patterns. In EKAW, pages 6381, 2004. [cited at p. 32, 71]

[19] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N.W. Paton, C.A. Goble,
and A. Brass. Tambis: Transparent access to multiple bioinformatics information
sources. Bioinformatics, 16(2):184-186, 2000. [cited at p. 98]

[20] Heiner Stuckenschmidt. Debugging owl ontologies - a reality check. proceedings of
the 6th international workshop on evaluation of ontology-based tools and the seman-
tic web service challenge (eon-swsc-2008), tenerife, spain, june 1-2, 2008. In EON,
volume 359 of CEUR Workshop Proceedings. CEUR-WS.org, 2008. [cited at p. §]

[21] Simon Thompson. Haskell The Craft of Functional Programming. Addison-Wesley,
second edition edition, 1999. [cited at p. 33]

[22] L. M. Vilches Bldzquez, M. A. B. Poveda, M. C. Sudrez-Figueroa, A. Gémez-Pérez,
and A. F. Rodriguez Pascual. Towntology & hydrontology: Relationship between
urban and hydrographic features in the geographic information domain. In Ontolo-
gies for Urban Development, pages 73—84. 2007. [cited at p. 98]

[23] Horridge M Rector A Drummond N Seidenberg J. Wang, H. Debugging owl-dl
ontologies: A heuristic approach. In: Proceedings of 4th International Semantic
Web Conference (ISWC), Galway, Ireland, LNCS 3729(745-747), 2005. [cited at p. 5,
75]

Appendices

109

Appendix A

EBNF Production Rules for
OPPL [10]

A.1 Statements

OPPL Statement ::= (<VariableDeclaration>)? (<Query>)7 (<Actiomns>)7 ";"
VariableDeclaration ::= <VariableDefinition> ("," <VariableDefinition>)x*

Actions ::= "BEGIN" Action ("," Action)+ "END"

VariableDefinition ::= <InputVariableDefinition> | <GeneratedVariableDefinition>
InputVariableDefinition ::= <IDENTIFIER> ":" <variableType> (<VariableTypeScope>)?
GeneratedVariableDefinition ::= <IDENTIFIER> ":" <variableType> "=" <opplFunction>
opplFunction ::= <create> | <creatInteserctions> | <createDisjunction>|

Any Manchester Syntax with variables expression compatible

with the generated variable.

create ::="create("<value>")"
createIntersection ::="createIntersection("<classvalues>")"
createDisjunction ::="createDisjunction("<classvalues>")"

/*The variable name in the production classvalues below must be of type CLASS*/
classvalues ::=<IDENTIFIER>".VALUES"

value ::= a string constant | <generatedValue>

generatedValue ::=<variableAttribute> (<aggregator> <variableAttribute>)*

aggregator ::="+"

variableAttribute ::=<IDENTIFIER>"."<attributeName>

attributeName ::="RENDERING"

VariableTypeScope ::= "[" <direction> <VariableFreeOWLExpression>"]"

direction ::= "subClassOf" | "superClass0f" | subPropertyOf | "superPropertyOf"
| "instanceOf"

111

112 APPENDIX A. EBNF PRODUCTION RULES FOR OPPL [10]

/*Direction production is not context free as it depends on which
variable type the variable is being applied to. The scope, therefore,
is not context free eitherx/
Constraint ::= <IDENTIFIER> "!=" <OWLExpression>
| <IDENTIFIER> "MATCH" <RegularExpression>
| <IDENTIFIER> "IN" "{" <OWLExpression> ("," <OWLExpression>)* "}"

variableType ::= "CLASS" | "OBJECTPROPERTY | "DATAPROPERTY" | "INDIVIDUAL" | "CONSTANT
Query ::= "SELECT" ("ASSERTED")? <Axiom> (", ("ASSERTED")?" <Axiom>)*
("WHERE" <Constraint> ("," <Constraint>)x*)?
Action ::= "ADD" | "REMOVE" <Axiom>
Axiom ::= An axiom in Manchester OWL Syntax (possibly containing variables)
IDENTIFIER ::= "?"<LETTER> (<LETTER>|<DIGIT>)*
LETTER ::= ["_","a"-"z","A"-"Z", ,"\u00e0"-"\u00£f9"]
DIGIT ::= ["0"-"9"]
OWLExpression ::= An OWL entity in Manchester OWL Syntax

(possibly containing variables)
VariableFreeOWLExpression ::= An OWL entity in Manchester OWL Syntax
(without variables)
RegularExpression ::= A Java regular expression for string matching
(applies to the entity rendering)

A.2 Manchester OWL Syntax axioms

SubClassAxiom ::= <ClassDescription> "SubClass0f" <ClassDescription>
EquivalentClassAxiom ::= <ClassDescription> "EquivalentTo" (<ClassDescription>)+
DisjointClassAxiom ::= <ClassDescription> "DisjointWith" (<ClassDescription>)+
FunctionalObjectPropertyAxiom ::= "Functional" <0ObjectProperty>
SymmetricObjectPropertyAxiom ::= "Symmetric" <ObjectProperty>
ReflexiveObjectPropertyAxiom ::= "Reflexive" <ObjectProperty>
TransitiveObjectPropertyAxiom ::= "Transitive" <ObjectProperty>
AntiSymmetricObjectPropertyAxiom ::= "AntiSymmetric" <ObjectProperty>
IrreflexiveObjectPropertyAxiom ::= "Irreflexive" <ObjectProperty>
SubObjectPropertyAxiom ::= <0ObjectProperty> "SubPropertyOf" <ObjectProperty>
EquivalentObjectPropertyAxiom ::= <ObjectProperty> "EquivalentTo" (<ObjectProperty>)+
DisjointPropertyAxiom ::= <ObjectProperty> "DisjointWith" (<ObjectProperty>)+
InversePropertyAxiom ::= <ObjectProperty> "InverseOf" "("<ObjectProperty>")"
InverseFunctionalPropertyAxiom ::= <ObjectProperty> "InverseFunctional"
"("<0ObjectProperty>")"
FunctionalDataPropertyAxiom ::= "Functional" <DataProperty>

ObjectPropertyRangeAxiom ::= <ObjectProperty> "Range" <ClassDescription>

A.3. MANCHESTER OWL SYNTAX WITH VARIABLES ENTITIES 113

ObjectPropertyDomainAxiom ::= <ObjectProperty> "Domain" <ClassDescription>
SubDataPropertyAxiom ::= <DataProperty> "SubPropertyOf" <DataProperty>
EquivalentDataPropertyAxiom ::= <DataProperty> "EquivalentTo" (<DataProperty>)+
DisjointPropertyAxiom ::= <DataProperty> "DisjointWith" (<DataProperty>)+
DataPropertyDomainAxiom ::= <DataProperty> "Domain" <ClassDescription>
DataPropertyRangeAxiom ::= <DataProperty> "Range" <DataRange>
ClassAssertionAxiom ::= <ClassDescription> <Individual>
ObjectPropertyAssertionAxiom ::= <Individual> <ObjectProperty> <Individual>
DataPropertyAssertionAxiom ::= <Individual> <DataProperty> <Constant>
NegativeObjectPropertyAssertionAxiom ::= "not" <Individual> <ObjectProperty>
<Individual>
NegativeDataPropertyAssertionAxiom ::= "not" <Individual> <DataProperty> <Constant>
SameAsAxiom ::= <Individual> "sameAs" (<Individual>)+
DifferentFromAxiom ::= <Individual> "differentFrom" (<Individual>)+

A.3 Manchester OWL Syntax with variables entities

ClassDescription ::= <ClassIntersection>
ClassIntersection ::= <ClassUnion> ("and" <ClassUnion>)*
ClassUnion ::= <NonN-aryDescription> ("or " <NonN-aryDescription>)*
NonN-aryDescription ::= <PrimitiveClass> | <ObjectRestriction>
| <DataRestriction> | "not" <ClassDescription>
| "oneOf {" <Individual> (, <Individual>)* "}"
DataRestriction ::= <DataProperty> "some" <DataRange> | <DataProperty> "only" <DataRai
ObjectRestriction ::= <ObjectProperty> "some" <ClassDescription>
| <ObjectProperty> "only" <ClassDescription>
| <0ObjectProperty> "value" <Individual>
| <ObjectProperty> "min" <NonNegativelInteger> (<ClassDescriptio:
| <ObjectProperty> "exactly" <NonNegativeInteger> (<ClassDescri
| <0ObjectProperty> "max" <NonNegativelInteger> (<ClassDescriptio:
PrimitiveClass ::=<ClassName> | <VariableName>

ObjectProperty ::=<0bjectPropertyName> | <VariableName>
DataProperty ::=<DataPropertyName> | <VariableName>
Individual ::=<IndividualName> | <VariableName>
Constant ::=<ConstantLiteral> | <VariableName>
ClassName ::= <LETTER> (<LETTER>|<DIGIT>)*
ObjectPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)*
DataPropertyName ::= <LETTER> (<LETTER>|<DIGIT>)=*
IndividualName ::= <LETTER> (<LETTER>|<DIGIT>)*
ConstantlLiteral ::= "See the OWL specification"

114 APPENDIX A. EBNF PRODUCTION RULES FOR OPPL [10]

DataRange ::= See Manchester OWL Syntax references above
NonNegativeInteger ::= Any integer greater than or equal to zero
ClassName ::= <LETTER> (<LETTER>|<DIGIT>)*

VariableName ::= "7" <LETTER> (<LETTER>|<DIGIT>)*

LETTER ::= ["_","a"-"z","A"-"Z","\u00e0"-"\u00£9"]

DIGIT ::= ["0"-"9"]

Appendix B

List of Method in OWLFunc
Class

1. boolean isSuccessor0f (OWLOntology ontology,
Set<0OWLOntology> importedOntologies, OWLClass cl, OWLClass c2)

*

This method checks whether ¢; C ¢y in ontologies.

2. boolean generateAncestorPath(LinkedList<OWLAxiom> curPath,
OWLDataFactory dataFactory, OWLOntology ontology,
Set<OWLOntology> importedOntologies, OWLClass cl, OWLClass c2)

This method generates path (list of axiom) that performs ¢; C ¢o in
ontologies. The path will be returned in curPath. If there is no path, it
returns false.

3. boolean generateAncestorPathToAnonymous (
LinkedList<OWLAxiom> curPath, OWLDataFactory dataFactory,
OWLOntology ontology, Set<OWLOntology> importedOntologies,
OWLClass cl, OWLDescription c2)

This method is almost similar to the previous method, but co must be
anonymous class.

4. Set<0WLClass> getAllDescendent (OWLOntology ontology,
Set<OWLOntology> importedOntologies, OWLClass cl)

This method returns all descendent class ¢ in ¢ C7 ¢;.

5. Set<OWLClass> getIntersectionClass(Set<OWLClass> gl, Set<OWLClass> g2)

This method returns intersection between two set of OWLClass.

*Ontologies means {ontology} U importedOntologies

115

116

10.

11.

12.

13.

14.

APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

Set<0WLDescription> getIntersectionDescription(
Set<OWLDescription> gl, Set<OWLDescription> g2)

This method returns intersection between two set of OWLDescription.

Set<OWLEquivalentClassesAxiom> getOWLEquivalentClassesAxioms (
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent class axioms in ontologies.

Map<OWLEquivalentClassesAxiom,0OWLOntology>
getOWLEquivalentClassesAxiomsAndOntology (
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent class axioms in ontologies including a
mapping of each axiom to its ontology.

Set<0OWLSubClassAxiom> getOWLSubClassAxioms(0OWLOntology curOntology,
Set<0WLOntology> importedOntologies)

This method returns all subclass axioms in ontologies.

Set<0OWLSubClassAxiom> getSubClassAxiomsForLHS(OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all subclass axioms in ontologies whose the subclass
is cls.

Set<0OWLObjectSubPropertyAxiom> getObjectSubPropertyAxiomsForLHS (
OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object property axioms in ontologies whose the
sub property is r.

Set<0OWLObjectSubPropertyAxiom> getObjectSubPropertyAxiomsForRHS (
OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object property axioms in ontologies whose the
super property is r.

Set<0OWLObjectPropertyExpression> getObjectSubProperty(
OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all sub object properties of r in ontologies.
Set<0OWLObjectPropertyExpression> getObjectPropertyIlnverse(

OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

15.

16.

17.

18.

19.

20.

21.

22.

117

This method returns all inverse object properties of r in ontologies.

Set<OWLObjectPropertyExpression> getObjectSuperProperty(
OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all super object properties of 7 in ontologies.
Set<OWLObjectPropertyExpression> getObjectSubPropertyClosure (

OWLOntology ontology,
Set<OWLOntology> importedOntologies, OWLObjectPropertyExpression r)

This method returns all sub object properties of r in ontologies, taking into
account an indirect sub property.
Set<OWLDisjointClassesAxiom> getDisjointClassesAxioms(0OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all disjoint class axioms that contain cls.
Set<OWLDescription> getDisjointClasses(0OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all classes (including anonymous class) that are dis-
joint with cls.
Set<OWLEquivalentClassesAxiom> getEquivalentClassesAxioms(0OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all equivalent class axioms that contain cls.
Set<0WLEquivalentObjectPropertiesAxiom> getEquivalentPropertyAxioms(

OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method returns all equivalent object property axioms that contain r.

Set<OWLEquivalentClassesAxiom> getEquivalentClassesAxioms(0OWLClass clsl,
OWLClass cls2,
OWLOntology curOntology, Set<OWLOntology> importedOntologies,
Set<OWLEquivalentClassesAxiom> axiomChecked)

This method returns all equivalent class axioms that perform cls; =" clss.
Set<OWLDescription> getEquivalentClassClosure(OWLClass clsi,

OWLOntology curOntology, Set<OWLOntology> importedOntologies,
Set<0OWLEquivalentClassesAxiom> axiomChecked)

This method returns all classes that are equivalent with cls; directly or
indirectly (by transitivity of =).

118 APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

23. Set<0OWLObjectPropertyExpression> getEquivalentPropertyClosure (
OWLObjectPropertyExpression r,
OWLOntology curOntology, Set<OWLOntology> importedOntologies,
Set<OWLEquivalentObjectPropertiesAxiom> axiomChecked)

This method returns all object properties that are equivalent with r directly
or indirectly (by transitivity of =).

24. Set<0OWLDescription> getEquivalentClassClosureWithAnonymous (
OWLDescription clsli,
OWLOntology curOntology, Set<OWLOntology> importedOntologies,
Set<0OWLEquivalentClassesAxiom> axiomChecked)

This method returns all classes (including anonymous class)that are equiv-
alent with cls; directly or indirectly (by transitivity of =).

25. boolean generateEquivalentPath(
LinkedList<0OWLEquivalentClassesAxiom> curPath,
OWLClass cl1, OWLDescription c2,
OWLOntology curOntology, Set<OWLOntology> importedOntologies,
Set<0WLEquivalentClassesAxiom> axiomChecked)

This method returns all equivalent class axiom that perform ¢; =" ¢y where

co may be an anonymous class.
26. Set<0OWLDescription> getSuperClasses(OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all super classes of cls in ontologies.
27. Set<0OWLDescription> getEquivalentClasses(OWLClass cls,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all classes that are equivalent with cls in ontologies.
28. Set<0WLFunctionalDataPropertyAxiom> getOWLFunctionalDataPropertyAxiom(
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all functional data property axiom in ontologies.
29. Set<0WLFunctionalObjectPropertyAxiom> getOWLFunctionalObjectPropertyAxiom(
OWLOntology curOntology, Set<OWLOntology> importedOntologies)
This method returns all functional object property axiom in ontologies.
30. boolean contentAxiom(OWLOntology curOntology,
Set<OWLOntology> importedOntologies, OWLAxiom axiom)

This method checks whether ontologies contain axiom.

31.

32.

33.

34.

35.

36.

37.

38.

119

LinkedList<0OWLAxiom> getDisjointLink(OWLDataFactory dataFactory,
OWLDescription dl1, OWLDescription d2,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms that prove disjointness between d; and ds.

LinkedList<OWLAxiom> getDisjointLinkOnUnion(
OWLDataFactory dataFactory, Set<OWLClass> sl, Set<OWLClass> s2,
OWLOntology curOntology, Set<WLOntology> importedOntologies)

This method return all axioms that prove disjointness between d; and ds
where d; is set of operand in union operator.

LinkedList<OWLAxiom> getDisjointLinkAmongIntersection(
OWLDataFactory dataFactory, Set<OWLDescription> classOperands,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms proving that there is one disjointness among

classes in classOperands.

LinkedList<0OWLAxiom> getDisjointLink(
OWLDataFactory dataFactory, OWLClass cl, OWLClass c2,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return all axioms that show disjointness between class ¢; and
C9.
Set<0WLClass> getAllAncestor (OWLOntology ontology,
Set<OWLOntology> importedOntologies, OWLClass cl)
This method returns all classes where each class ¢ in ¢; C1 c.
Set<0WLDescription> getAllAnonymousAncestor (
OWLOntology ontology, Set<OWLOntology> importedOntologies, OWLClass cl)
This method returns all anonymous classes where each class cin ¢; T c.
LinkedList<OWLAxiom> getFirstAxiomsHavingMinOrExactOrSomeRestriction(
OWLDataFactory dataFactory,

OWLOntology ontology, Set<OWLOntology> importedOntologies,
OWLClass cl, OWLObjectPropertyExpression r)

This method return all axioms that show property r must have at least
a value , normally specified as existential restrictions, (minimum) or exact
cardinality restriction for class ¢; with a positive number on the cardinality.

boolean isConceptExist(0WLClass c1,0WLOntology curOntology)

This method check whether class ¢; exists in the curOntology.

120 APPENDIX B. LIST OF METHOD IN OWLFUNC CLASS

39. int countFreqConcept(0OWLClass c1i,
OWLOntology curOntology, Set<OWLOntology> importedOntologies)

This method return frequency of class ¢; used in ontologies.

40. Set<OWLAnnotation> getClassAnnotation(0OWLClass cls,
OWLOntology curOntology)

This method return all annotations of class ¢ls.

List of Symbols
and Abbreviations

Abbreviation Description Definition
OWL Ontology Web Language page 5
DL Description Logic page 5
OPPL Ontology Pre-Processor Language page 11
RDF Resource Description Framework page 10
API Application Programming Interface page 11
Jar Java Archive page 83
GUI Graphical User Interface page 88

121

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Screenshot of Protégé OWL Debugger

Screenshot of SWOOP oo
Screenshot of RepairTab o oL

Screenshot of Protégé
Reasoner in Protégé
Screenshot of LintRoll oo

Indirect Disjointness of C7 and Co
Indirect Disjointness over two unions

Transformation process flowchart
Detection process flowchart
Execution process flowchart
Apero as a plug-in in Protégé
How to access Apero from menu [Tabs| in Protégé
How to access Apero from menu [View] in Protégé
A Java-properties file. L L
A UML Class Diagram Lint-based Antipattern implementation
A mapping antipattern configuration to the GUT
Before transformationo 000
An annotation acknowledgment
After transformation
Before detection process oo
After detection process
SMALO antipattern
Execution process 1
Execution process 2o

Description of class Ponor before execution

122

LIST OF FIGURES 123

6.19 Description of class Ponor after execution 94
6.20 Debugging Strategy in [4] oo 95
6.21 New Debugging Strategy 96
7.1 New formula representation 99
7.2 Transformation Detection 101
7.3 Detection of CS_Department on SWOOP 102

7.4 Recommendation on SWOOP 103

List of Tables

2.1
2.2

4.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Mapping of Syntax oo 11
Catalogue of antipatternin [5] 14
New catalogue of antipattern 24
A group of antipattern category 7
A OPPL-based antipattern configuration 78
A Lint-based antipattern configuration 78
List of ontologies 98
Summary of testing resulto Lo 99
Detail of testing result o Lo 100
Comparison between Apero and SWOOP 101

124

List of Codes

© 00 N & U = W N =

LW DN DN DN DNNDNDNIDNDIDDNDDFE = = = s s =
S © 00 O U WO © 0O U Wy = O

DOC OPPL Script oo o 27
SMALO OPPL Script oo 27
MIZ OPPL Script 28
DCS OPPL Script« oo oo 29
Pseudocode for AIO (5.1) 33
Pseudocode for AIO (5.2) 34
Pseudocode for AIO (5.3) 34
Pseudocode for AIO (5.4) 34
Pseudocode for AIO (5.5) 34
Pseudocode for OIL (5.6) 36
Pseudocode for OIL (5.7) 37
Pseudocode for OILWI (5.8) 38
Pseudocode for OILWI (5.9) 39
Pseudocode for UE (5.10) 40
Pseudocode for UE (5.11) 40
Pseudocode for UEWI (5.12) 42
Pseudocode for UEWPI (5.14) 44
Pseudocode for UEWPI (5.15) 45
Pseudocode for UEWPI (5.16) 45
Pseudocode for UEWIP (5.17) 47
Pseudocode for UEWIP (5.18) 48
Pseudocode for VOV (5.19) 50
Pseudocode for VOV (5.20) 51
Pseudocode for EID (5.21) 53
Pseudocode for EID (5.22) 53
Pseudocode for EID (5.22) L. 53
Pseudocode for EID (5.23) 54
Pseudocode for EAD (5.24) 55
Pseudocode for EAD (5.25) 55
Pseudocode for SID (5.26) 56

126

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

LIST OF TABLES

Pseudocode for SAD (5.28) 57
Pseudocode for MMCaR (5.31) 59
Pseudocode for ECRWIP (5.34) 61
Pseudocode for ECRWIP (5.35) 62
Pseudocode for SOSER (5.36) 64
Pseudocode for SOSER (5.37) 66
Pseudocode for SOE (5.38) 67
Pseudocode for SOE (5.39) 68
Pseudocode for UIE (5.42) 70
Pseudocode for UIE (5.43) 70
Pseudocode for ECR (5.44) 72
Pseudocode for ECR (5.45) 72
Pseudocode for DOS (5.46) 73
Pseudocode for DOS (5.47) L. 74
File MIZ prefix.txt oo 86
File MIZ_1.t4xt oo o o e 86

	Contents
	1 Introduction
	2 State of the Art
	2.1 OWL and Protégé
	2.2 OPPL
	2.3 Antipattern
	2.4 LintRoll

	3 Work Objectives
	4 OPPL-Based AntiPatterns
	4.1 Guideline DisjointnessOfComplement (DOC)
	4.2 Guideline SomeMeansAtLeastOne (SMALO)
	4.3 Guideline MinIsZero (MIZ)
	4.4 Guideline DisjointnessofComplementonSubclass (DCS)

	5 Lint-Based AntiPatterns
	5.1 Detectable Logical AntiPatterns (DLAP)
	5.1.1 AntiPattern AndIsOr (AIO)
	5.1.2 AntiPattern OnlynessIsLoneliness (OIL)
	5.1.3 AntiPattern OnlynessIsLonelinessWithInheritance (OILWI)
	5.1.4 AntiPattern UniversalExistence (UE)
	5.1.5 AntiPattern UniversalExistenceWithInheritance (UEWI)
	5.1.6 AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)
	5.1.7 AntiPattern UniversalExistenceWithInverseProperty (UEWIP)
	5.1.8 AntiPatterns hasValueisOneValue (VOV)
	5.1.9 AntiPattern EquivalenceIsDifference (EID)
	5.1.10 AntiPattern EquivalencesAreDifferences (EAD)
	5.1.11 AntiPattern SubclassIsDifference (SID)
	5.1.12 AntiPattern SubclassesAreDifferences (SAD)
	5.1.13 AntiPattern MinimalMaximalCardinalityRestriction (MMCaR)
	5.1.14 AntiPattern Existential&CardinalityRestrictionWithInverseProperty (ECRWIP)
	5.1.15 AntiPattern SumOfSomwithExactRestriction (SOSER)

	5.2 Cognitive Logical AntiPatterns (CLAP)
	5.2.1 AntiPattern SynonymOrEquivalence (SOE)
	5.2.2 AntiPattern SumOfSom (SOS)

	5.3 Guidelines
	5.3.1 Guideline UnionInEquivalency(UIE)
	5.3.2 Guideline Existential & Cardinality Restriction(ECR)
	5.3.3 Guideline Distributivity On Subclass (DOS)

	6 Apero Plug-in
	6.1 Analysis
	6.2 Design
	6.2.1 Configuration
	6.2.2 Transformation Process Design
	6.2.3 Detection Process Design
	6.2.4 Execution Process Design

	6.3 Implementation
	6.3.1 Environment
	6.3.2 Antipattern Implementation
	6.3.3 Transformation Process Implementation
	6.3.4 Detection Process Implementation
	6.3.5 Execution Process Implementation

	6.4 Debugging Strategy Based on Antipatterns

	7 Evaluation
	7.1 Evalution Setup
	7.2 Evalution Test Case and Plan
	7.3 Evaluation Result

	8 Conclusion and Future Work
	Bibliography
	A EBNF Production Rules for OPPL GRA2010
	A.1 Statements
	A.2 Manchester OWL Syntax axioms
	A.3 Manchester OWL Syntax with variables entities

	B List of Method in OWLFunc Class
	List of Symbols and Abbreviations
	List of Figures
	List of Tables

